■原著論文/ORIGINAL PAPER■

球状伝播予混合乱流火炎の燃焼速度および火炎面形状の有効乱れ強さによる変化

Variations of Turbulent Burning Velocity and Flame Front Shape of Spherically Propagating Premixed Turbulent Flame with Effective Turbulence Intensity

早川 晃弘¹·三木 由希人²·久保 俊彦²·永野 幸秀²·北川 敏明^{2*}

HAYAKAWA, Akihiro¹, MIKI, Yukito², KUBO, Toshihiko², NAGANO, Yukihide² and KITAGAWA, Toshiaki^{2*}

¹ 九州大学大学院工学府・日本学術振興会特別研究員 (DC1) 〒819-0395 福岡県福岡市西区元岡 744 Kyushu University, JSPS Research Fellow (DC1), 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan

² 九州大学大学院工学研究院 〒819-0395 福岡県福岡市西区元岡 744 Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan

2012 年 10 月 23 日受付; 2013 年 1 月 30 日受理/Received 23 October, 2012; Accepted 30 January, 2013

Abstract : Turbulent burning velocity of spherically propagating premixed turbulent flame keeps increasing during flame propagation although that of steady flame is constant for a given turbulence intensity. In this study, the variation of turbulent burning velocity of spherically propagating turbulent flame during flame propagation was investigated. As the size of flame becomes larger, scales of turbulent eddies effective to turbulent burning velocity may vary. The effective turbulence intensity was adopted in order to evaluate the energy of these eddies only among the entire energy of turbulence. The flame front area is considered to be one of the dominant parameters for turbulent burning velocity. The perimeter of cross-sectional image of turbulent flame which may correlate with the turbulent flame front area was evaluated using effective turbulence intensity. Experiments were carried out for stoichiometric iso-octane/air flames at initial mixture pressures of 0.10, 0.25 and 0.50 MPa. The cross-sectional images of spherically propagating premixed turbulent flame to that of laminar one increased with the increase in effective turbulence intensity. The increase in turbulent flame during flame propagation may be caused by the increase in the ratio of turbulent flame front area to laminar one during flame propagation.

Key Words : Premixed turbulent flame, Turbulent burning velocity, Spherically propagating flame, Flame front shape

1. まえがき

ガソリンエンジンにおいて,火炎は高圧下の乱流場を伝 播する.その乱流燃焼速度は,エンジン性能に関わる重要 なものである.著者らはこれまでに,燃焼容器内を球状に 伝播する予混合乱流火炎を対象に,乱流燃焼速度,および, それに及ぼす熱-拡散効果の影響などを,加圧下も含め検 討してきた[1-3].

これまでに、予混合気の乱流燃焼速度は、多くの場合、 バーナー火炎のような定在乱流火炎を用いて求められてき た[4-6]. 定在乱流火炎では乱流場と火炎がともに定常であ るため、それから求められる乱流燃焼速度は、時間によっ て変化しない. 一方、著者ら[1-3], Bradley ら[7,8]および Weiß ら[9]が示すように,球状に伝播する予混合火炎の乱 流燃焼速度は,火炎が伝播するにつれて大きくなる.また, エンジン筒内を伝播する予混合火炎の乱流燃焼速度も,火 炎が伝播するにつれて増大することが,Kosaka らにより示 されている[10].

Abdel-Gayed および Bradley ら[11]は、火炎が伝播するに つれて、火炎面に乱れとして作用する乱れの強さが変化す るため、球状伝播予混合火炎の乱流燃焼速度が、火炎が伝 播するにつれて増大するものと考えた.そこでは、火炎が 小さいときは、乱れ場に存在するさまざまなスケールの乱 流渦のうち、小さいスケールの乱流渦のみが火炎面に乱れ として作用し、大きいスケールの乱流渦は火炎をただ対流 により移動させるのみであると考えられている.火炎が伝 播するにつれて、より大きいスケールの乱流渦までも火炎 面に乱れとして作用するようになる.

^{*} Corresponding author. E-mail: toshi@mech.kyushu-u.ac.jp

このように、火炎の大きさによって火炎面に乱れとして 作用する乱流渦のスケールの範囲が変化すると考え、乱流 渦のうち火炎面に乱れとして作用する乱流渦が有する乱流 エネルギーから定まる乱れの強さを、有効乱れ強さとした [11,12]. 球状に伝播する予混合乱流火炎では、火炎が伝播 するにつれて、火炎面に乱れとして作用する乱流渦のス ケールの範囲が拡大する.このような火炎面に乱れとして 作用する乱流渦のスケール範囲の変化を、有効乱れ強さに より表すことができるものと考えられる.球状に伝播する 予混合乱流火炎では、火炎が伝播するにつれて有効乱れ強 さが増大するため、乱流燃焼速度は時間によって変 化しない.

乱流燃焼速度は、ある程度の乱れ強さの範囲までは、乱 れによる火炎面積の増大と熱-拡散効果[13]による火炎面 局所の燃焼速度の変化により、おもに定まっているものと 考えられる.このうち、乱れによる火炎面積の増大が、乱 流燃焼速度を支配する最も重要な因子であると考えられ る.そのため、乱流火炎面積の定量的な評価がなされてい るが[9,14]、乱流火炎面積の定量的な評価がなされてい るが[9,14]、乱流火炎面は複雑な三次元形状を有している ため[15]、その面積を求めるのは一般には容易ではない. 一方、乱流火炎の断層写真撮影により得られる乱流火炎断 面の周長は、乱流火炎面積と相関を有しているものと考え られる[9,16].すなわち、大きい火炎面積を有する乱流火 炎は、長い断面周長を有しているものと考えられる.

著者らはこれまでに、連続光源および高速度カメラを用 いたシュリーレン法により、球状に伝播する予混合乱流火 炎を撮影してきた[1-3]. しかしながら、シュリーレン法に より得られる像は、光軸方向に凹凸が重なり合った像であ るため、その境界周長から火炎面積を評価するのは適切で はないと考えられる.

これまでに、Weiß ら[9]および Kwon ら[17]により、球状 に伝播する予混合乱流火炎の火炎面積および乱流火炎断面 周長などが調べられている。Weiß らは、ある半径の火炎に ついて火炎面積を評価しているが、火炎伝播中に火炎面積 がどのように変化するかは明らかではない。Kwon らは、 火炎が伝播するにつれて乱流火炎断面周長が増大すること を示している。しかし、その原因、また、火炎断面周長と 乱流燃焼速度との間の関係については明確ではない。

そこで本研究では、レーザートモグラフ法を用いて、球 状に伝播する予混合乱流火炎の断層写真を撮影し、乱流火 炎断面周長を求めた.さらに、乱流燃焼速度および乱流火 炎断面周長の火炎伝播に伴う変化を調べ、乱流燃焼速度が 火炎伝播に伴って増大する原因について、有効乱れ強さお よび乱流火炎断面周長の観点から考察を行った.

2. 実験装置および実験方法

本研究では、レーザートモグラフ法により乱流火炎の断

Fig.1 Experimental setup.

層写真撮影を行った.図1に、実験装置の概要を示す.

燃焼実験は、定容燃焼容器[1-3]を用いて行った. 燃焼室 は 3 つの円筒による直交相貫体の形状をしており、燃焼室 容積は約 35 リットルである. 燃焼室中心で混合気の火花 点火を行うため、点火電極として直径 1.8 mm のステンレ ス棒を挿入している. 2 つの電極は、ともに先端を円錐状 にしている. 点火エネルギーは 1.4 J とした. 燃料にはイ ソオクタンを、酸化剤には乾燥空気を用いた. 混合気初期 温度は 340 K とした. 当量比 ϕ は 1.0 とした. 混合気初期 圧力 P_i は 0.10, 0.25 および 0.50 MPa とした.

単パルス Nd:YAG レーザー (Spectra-Physics, Quanta-Ray LAB-150) から射出される光のうち,第二高調波 (波長 532 nm, 300 mJ/pulse)を光源として使用した. ビームエキスパ ンダーおよび 2 枚のシリンドリカルレンズを通してシート 状に引き伸ばした光を,燃焼室内に照射する. 燃焼室中心 付近における理論上のレーザーシート厚さは 28 μm である.

トレーサ粒子として,二酸化チタン(粒子直径 0.03~ 0.05 µm)を用いた.混合気充填前に,あらかじめ燃焼室内 にトレーサ粒子を封入しておく.トレーサ粒子の有無によ り燃焼圧力履歴は変化しなかったため,トレーサ粒子は乱 流燃焼速度や乱流火炎形状には影響を及ぼさないものと考 えられる.

トレーサ粒子からの散乱光を,デジタル一眼レフカメラ (Nikon, D300s) により撮影した.レンズには,焦点距離 105 mm のマクロレンズ (Micro-Nikkor 105mm f/2.8S) を用 い,F値は 4.0 とした.シャッター速度は 1/200 s, ISO 感 度は 800,撮影画素数は 4288×2848 ピクセルとした.得ら れた画像の解像度は,撮影する火炎の大きさによって異な り,0.022 から 0.046 mm/pixel の範囲にある.干渉フィル ターを用いて,火炎の自発光の影響を取り除いた.レーザー 発振,点火および撮影のタイミングは,信号発生器 (エヌ エフ回路設計ブロック, EZ1660) により制御されている.

本研究で使用したレーザーが単パルスレーザーであるた め、火炎伝播中のただ1つのタイミングでのみ、レーザー トモグラフ法による断層写真撮影を行うことができる.そ こで、レーザートモグラフ法による撮影に先立ち、連続光

Table 1 Characteristics of laminar flame and turbulence.

P_i MPa	<i>u_l</i> cm/s	Ма	$Re_{\lambda f}$	u'/u _l	L_f / δ_F
0.10	38.0	4.01	120.5	1.61	499.3
0.25	30.7	2.95	190.5	2.00	1008.8
0.50	25.3	2.64	269.5	2.42	1662.3

Fig.2 Examined conditions on Peters diagram [19].

源と高速度カメラを用いたシュリーレン法[1-3]により,乱 流火炎半径の時間変化を求めた.本研究では、シュリーレン 像から求められる乱流火炎半径 r_{sch}が、15、30 および 45 mm となるタイミングで、レーザートモグラフ法による断層写 真撮影を行った.シュリーレン像から求められる乱流火炎 半径 r_{sch} については、4.2 節に示す.断層写真撮影は、各条 件につき 5 回以上行った.

燃焼室上下に取り付けられたファンを回転させながら火 花点火を行うことで、乱流燃焼を行うことができる。燃焼 室内の乱流特性は、PIV 計測により求めた[3].火炎の観測 範囲内において、乱れは一様等方性乱流とみなすことがで きる.ただし、この PIV 計測は非燃焼時に行った.本研究 では、燃焼時であっても未燃部の乱流特性は、非燃焼時の それと変わらないものと仮定した.本研究では、乱流燃焼 実験時の乱れ強さ u'を 0.61 m/s とした.乱れの空間積分ス ケール L_f は混合気初期圧力によらず一定で、23.7 mm で あった.乱れの Taylor マイクロスケール λ_f は、式 (1) によ り求めた.

$$\frac{\lambda_f^2}{L_f} = A_0 \cdot \frac{\nu}{u'} \tag{1}$$

ここで A₀ は 18.02 の定数, v は混合気の動粘性係数である. 式 (1) により求められる Taylor マイクロスケールは, 乱れ の変動成分の速度こう配を用いて定義される Taylor マイク ロスケールの定義式[18]から計算された値を, よく近似す ることができた[3].

表 1 に,実験条件における層流火炎および乱流場の特性 を示す.ここで, u_l は火炎が伸長を受けていないときの層 流燃焼速度, *Ma* は Markstein 数, $Re_{\lambda f}$ (= $u\lambda_f v$) は Taylor マ イクロスケールに基づく乱流 Reynolds 数, δ_F (=v/u_i) は層 流火炎厚さである.本研究における実験条件は,図2に示 すように,Petersの乱流火炎構造ダイアグラム[19]におい て,Corrugated flameletsの領域にある.

3. 有効乱れ強さ

乱流場には、さまざまなスケールの乱流渦が存在する. 小さい火炎に対しては、スケールの小さい乱流渦のみが火 炎面に乱れとして作用して、火炎面を変形させるものと考 えられる.この場合、スケールの大きい乱流渦は火炎を対 流により移動させるのみであると考えられる.火炎が伝播 し、大きい火炎となった場合には、スケールの大きい乱流 渦までも、火炎面を変形させるようになると考えられる. このような、火炎面に乱れとして有効に作用する乱れの強 さを、有効乱れ強さ[11,12]と呼ぶ.本研究では、既報[3]で 得られた有効乱れ強さを用いた、以下に、その概要を示す.

乱流場の速度変動成分の縦方向速度相関係数 R₁₁(r)の距離 r に対する変化は,混合気圧力や乱れ強さによらず,本燃焼容器の場合,式(2)によりよく表すことができた.

$$R_{11}(r) = \exp\left(-\rho r^{q}\right) \tag{2}$$

ここで、 $p = 3.44 \times 10^{-2}$ 、q = 1.06 である。乱れのエネルギー スペクトル関数 E(k) を、式 (2) を用いて、式 (3) により求 めた[20].

$$E(k) = \frac{k^2}{\pi} \int_0^\infty r^2 u'^2 R_{11}(r) \cdot \left(\frac{\sin kr}{kr} - \cos kr\right) dr$$
(3)

ここで, k は乱れの波数である. エネルギースペクトル関数 E(k) を,全ての波数について積分すると,乱れの全運動 エネルギー (3/2)u² になる.そこで,全ての波数の乱流渦 が火炎面に凹凸を形成する場合,有効乱れ強さが乱れ強さ u'と一致するように,有効乱れ強さ u'e を式(4) で定義した.

$$\boldsymbol{u'}_{\boldsymbol{\theta}}(\boldsymbol{k}_{0}) = \left[\frac{2}{3} \int_{\boldsymbol{k}_{0}}^{\infty} \boldsymbol{E}(\boldsymbol{k}) \mathrm{d}\boldsymbol{k}\right]^{1/2}$$
(4)

ここで、ko はしきい値となる波数である. すなわち、しきい値 ko より大きい波数の乱流渦の有する運動エネルギーのみが火炎面を変形させ、火炎面に凹凸を形成すると考えた. 火炎が伝播するにつれて、式 (4)の積分の下限である波数 ko が小さくなると考える. すなわち、火炎が伝播するにつれて、より小さい波数の乱流渦までも火炎面を変形させる ようになると考える.

ある大きさの火炎に作用する有効乱れ強さ u'_e を求める ためには、その火炎の大きさによって定まるしきい値 ko を 与える必要がある.本研究では、レーザートモグラフ法に より得られる乱流火炎の断層写真から求まる乱流火炎半径 r_{tgp}を用いて、しきい値 ko を定めた.レーザートモグラフ 法により求まる乱流火炎半径 r_{tgp} については、4.2 節に示す.

Fig.3 Variation of u'_e/u' with $(2\pi/k_0)/L_f[3]$.

火炎面はさまざまなスケールの乱流渦の影響を受ける. しかしながら,乱流火炎直径よりも大きな渦が火炎面に乱 れとして及ぼす影響は小さいものと考えられる.本研究で は,火炎面の凹凸は,レーザートモグラフ法により得られ る乱流火炎の断層写真から求まる乱流火炎の直径 2r_{tgp} と等 しいスケール 2π/k₀ より小さい乱流渦により形成されると 考え,しきい値となる波数 k₀ を式 (5)のように定めた.

$$k_0 = \frac{\pi}{r_{tgp}} \tag{5}$$

図3に、しきい値となる波数に対応する波長と乱れの積 分スケールの比 $(2\pi/k_0)/L_f$ に対する、有効乱れ強さと乱れ強 さの比 u'_e/u' の変化を示す[3]. しきい値の波長と乱れの積 分スケールの比 $(2\pi/k_0)/L_f$ が大きくなるにつれて、 u'_e/u' は 大きくなった.式(5)より $(2\pi/k_0)/L_f$ は $2r_{tgp}/L_f$ と対応してい ることから、火炎が伝播するにつれて有効乱れ強さ u'_e は 単調に増加し、その値は乱れ強さu'に近づく.

4. 実験結果および考察

4.1. シュリーレン像とレーザートモグラフ像の比較

図 4(a) に、シュリーレン法により撮影された乱流火炎の 写真を示す.シュリーレン写真は、同一の火炎を高速度カ メラにより連続撮影したもので、その火炎の乱流火炎半径 r_{sch} が 15、30 および 45 mm における写真を示している. また図 4(b) に、レーザートモグラフ法により撮影された乱 流火炎の断層写真を示す.レーザートモグラフ法により撮 影された乱流火炎の断層写真は、シュリーレン写真とは同 一の火炎のものではなく、また、火炎半径ごとにも異なる. 図 4(a) および (b) の写真は、r_{sch} ごとに異なる縮尺で示し ている.

シュリーレン像および断層写真のいずれの写真において も、同一の混合気初期圧力 *P_i* についてみると、*r_{sch}* が大き くなるにつれて火炎周長が長くなるために、火炎面に形成

(b) Tomograph images. Fig.4 Flame images of spherically propagating turbulent flames.

50 mm

 $> < _{80 \text{ mm}} > < _{110 \text{ mm}}$

される凹凸の数が多くなった.また、同一の乱流火炎半径 r_{sch} についてみると、混合気初期圧力 P_i が高くなるにつれて、火炎面に細かい凹凸が現れた.

同一の条件で乱流火炎のシュリーレン写真とレーザート モグラフ法により撮影した断層写真を比較すると、断層写 真では、未燃混合気が既燃ガスに深く入り込んでいるカス プが観察されるが、シュリーレン写真ではそのようなもの は観察されない.また、断層写真の方が、シュリーレン写 真より、火炎面に細かい凹凸が観察される.シュリーレン 法により得られる像は、火炎面の凹凸が光軸方向に重なり

50 MPa

合った像であるので,カスプや細かい凹凸の部分が現れて いないものと考えられる.

4.2. 乱流燃焼速度および火炎面形状の有効乱れ強さによ る変化

シュリーレン像より得られる乱流火炎半径 r_{sch} の時間変 化から,乱流燃焼速度を求めた.シュリーレン像により求 められる乱流火炎半径 r_{sch} は,乱流火炎像の面積と等しい 面積を有する円の半径とした.乱流火炎半径が r_{sch} におけ る乱流燃焼速度 $u_m(r_{sch})$ は,式(6)により求めた[1-3, 8].

$$u_{tn}(r_{sch}) = \frac{\rho_b}{\rho_u} \cdot \frac{\mathrm{d}r_{sch}}{\mathrm{d}t} \tag{6}$$

ここで、 ρ_u および ρ_b はそれぞれ、未燃混合気および既燃 ガスの密度、t は時間である。乱流燃焼速度についても、 有効乱れ強さと同様にレーザートモグラフ法により得られ る乱流火炎の断層写真から求まる乱流火炎半径 r_{tgp} を用い るのが適当であると考えられるが、2 章で述べたように、 本研究で用いた手法では、 r_{tgp} の時間変化を求めることが できなかった。そのため、乱流燃焼速度は、シュリーレン 像より得られる乱流火炎半径 r_{sch} に基づいて求めた。ここ で、式 (6) による r_{sch} に基づく乱流燃焼速度 面に未燃混合気が取り込まれる速度に基づく乱流燃焼速度 に対応付けられる[8].

図 5 に、乱流燃焼速度 $u_{in}(r_{sch})$ の r_{sch} に対する変化を示 す.ここで、乱流燃焼速度は、火炎が伸長を受けていない ときの層流燃焼速度との比 $u_{in}(r_{sch})/u_l$ として表している。 同一の混合気初期圧力 P_i についてみると、 $u_{in}(r_{sch})/u_l$ は、 シュリーレン像により求められる乱流火炎半径 r_{sch} が大き くなるにつれて、大きくなった.また、同一の乱流火炎半 径 r_{sch} についてみると、混合気初期圧力 P_i が大きくなるに つれて、 $u_{in}(r_{sch})/u_l$ は大きくなった.

図 6 に、乱流燃焼速度と有効乱れ強さの関係を示す. こ れらは図中で、火炎が伸長を受けていないときの層流燃焼 速度との比 $u_m(r_{sch})/u_l$ と u'_e/u_l として表している. 図のよう に、同一の混合気初期圧力 P_i についてみると、 u'_e/u_l が大 きくなるにつれて、 $u_m(r_{sch})/u_l$ は大きくなった.

このように乱流燃焼速度が変化するのは、火炎が伝播す るにつれて有効乱れ強さが大きくなり、火炎面積が増大し たためであると考えられる.図4(b)に示す乱流火炎の断層 写真から、乱流火炎断面の境界を抽出した.この境界は、 乱流火炎面に対応しているものと考えた.この抽出された 乱流火炎断面境界から、乱流火炎のブラシ厚さや乱流火炎 断面周長を算出し、有効乱れ強さに対する変化を調べた.

図 7 に,抽出された乱流火炎断面境界の例を示す. 乱流 火炎断面境界の外側は未燃混合気,内側は既燃ガスである と考えられる. 乱流火炎断面境界の平均半径を r_{tgp},乱流 火炎断面周長を l_{tgp} とする. それより外側は全て未燃混合 気となる円の半径を r_p それより内側は全て既燃ガスであ る円の半径を r_r とする. ブラシ厚さ b は r_t と r_r の二つの

Fig.7 Definitions of flame radius determined from cross-sectional image of turbulent flame, r_{tgp} , brush thickness, *b*, perimeter of cross-sectional image of turbulent flame, l_{tgp} .

半径の差とした. 乱流火炎断面境界の平均半径を有する円 の周長は $2\pi r_{tgp}$ となる. 乱流火炎断面周長 l_{tgp} は乱流火炎 面積と、 $2\pi r_{tgp}$ は半径 r_{tgp} を有する凹凸の無い球の面積と それぞれ相関を有するものと考えられる. すなわち, これ らの比 $l_{tgp}/(2\pi r_{tgp})$ は、その半径における、乱れによる火炎 面積の層流火炎からの増加率と相関を有するものと考えら れる[9,16].

b / r_{tgp}

Fig.8 Variation of b/r_{tgp} with u'_e/u_l .

Fig.9 Variation of b/L_f with u'_e/u_l .

Fig.10 Variation of $l_{tgp}/(2\pi r_{tgp})$ with r_{sch} .

図 8 に、ブラシ厚さと火炎半径の比 b/r_{tgp} の、有効乱れ 強さと火炎が伸長を受けていないときの層流燃焼速度の比 u'_e/u_l に対する変化を示す.図に示されるように、 b/r_{tgp} は u'_e/u_l によらず、0.56 程度の値であった.式(5)より、 b/r_{tgp} は $2b/(2\pi/k_0)$ と等しい.Bradley らによれば、有効乱れ強さ を定める際のしきい値となる波数 k_0 から定まるスケール $2\pi/k_0$ は、火炎面に生じている最大スケールの変形と関連 を有しているものと考えられる[21].すなわち、ブラシ厚 さ bは乱流火炎面に生じる最大スケールの凹凸を代表しているものと考えられる.

有効乱れ強さが大きくなるにつれて、大きいスケールの 乱流渦の影響や、強い乱れの影響を受けるため、火炎面に は大きいスケールの変形が現れるものと考えられる。そこ で、乱流火炎面に生じる最大スケールの凹凸を代表するブ ラシ厚さ b の、有効乱れ強さに対する変化を調べた。図 9 に、ブラシ厚さ b の有効乱れ強さと火炎が伸長を受けてい ないときの層流燃焼速度との比 u'_e/u_l に対する変化を示す. ここでは、ブラシ厚さ b は、乱れの積分スケール L_f との比 b/L_f として表している。図のように、いずれの混合気初期 圧力 P_iの場合も、有効乱れ強さと火炎が伸長を受けていな いときの層流燃焼速度の比 u'_e/u_l が大きくなるにつれて、 b/L_f は大きくなった。すなわち、u'_e/u_lが大きくなるにつれ て、火炎面には大きなスケールの変形が現れている。

乱流燃焼速度は、ある程度の乱れ強さの範囲までは、乱 れによる火炎面積の増大と熱-拡散効果[13]による火炎面 局所の燃焼速度の変化により、おもに定まっているものと 考えられる.その中でも、とくに乱れによる火炎面積の増 大が、乱流燃焼速度に大きく影響を及ぼしているものと考 えられる.しかしながら、複雑な三次元形状を有する乱流 火炎の面積を求めるのは困難であった.そこで本研究では、 火炎面積と相関を有していると考えられる乱流火炎断面境 界の周長を求め、これの火炎半径や有効乱れ強さに対する 変化を調べた.

図 10 に、乱れによる火炎面積の増加率と相関を有して いると考えられる lton/(2πrton) の、シュリーレン像により求 められる乱流火炎半径 rsch に対する変化を示す. 図に示す ように、本研究により得られた $l_{tgp}/(2\pi r_{tgp})$ の値は、1 より 大きな値となった. これは、乱れにより火炎面に凹凸が形 成されたため, 乱流火炎面積が, その半径を有する凹凸の 無い球の面積から増大したためであると考えられる. 同一 の混合気初期圧力 P_i についてみると、 r_{sch} が大きくなるに つれて, l_{tgp}/(2πr_{tgp})の値は大きくなった. 図中に, Kwon ら[17]により得られた結果も示している. ただし, Kwon らの実験は、混合気初期温度 298 K、混合気初期圧力が 0.3 MPa, 当量比 φ = 1.8 の水素・空気予混合気に対するも のである. Kwon らによる結果も、本研究の結果と同様に、 火炎が大きくなるにつれて $l_{tgp}/(2\pi r_{tgp})$ の値は大きくなって いる. また,同一の r_{sch} についてみると,混合気初期圧力 P_i が高くなるにつれて、 $l_{tep}/(2\pi r_{tep})$ の値は大きくなった.

図 11 に, l_{tgp}/(2πr_{tgp})の u'_e/u_l に対する変化を示す. 同一

Fig.11 Variation of $l_{tgp}/(2\pi r_{tgp})$ with u'_e/u_l .

の混合気初期圧力 P_i についてみると、 u'_e/u_l が大きくなるにつれて、 $l_{ggp}/(2\pi r_{ggp})$ は大きくなった.

以上をまとめると、火炎が伝播するにつれて乱流燃焼速 度が大きくなるのは、火炎が伝播するにつれて、乱れによ る火炎面積の増加率が大きくなったためであると考えられ る.また、火炎が伝播するにつれて火炎面積の増加率が大 きくなったのは、火炎が伝播するにつれて、火炎面に乱れ として作用する乱れの強さである有効乱れ強さが増大した ためであると考えられる.

同一の $u'_{e}u_{l}$ において, P_{i} が大きくなるにつれて, $l_{igp}/(2\pi r_{igp})$ は大きくなった.しかしながら,図6に示すように,同一の u'_{e}/u_{l} では,混合気初期圧力によらず $u_{in}(r_{sch})/u_{l}$ の値は同程度であった.混合気初期圧力が高くなると,層 流火炎厚さが薄くなる.本研究および既報[3]では,有効乱 れ強さを考慮する際のしきい値を,乱流火炎半径のみに基 づいて決定した.同一の乱れが火炎に作用した場合でも, 火炎厚さに応じて火炎面の挙動は変化するものと考えられ る[22].混合気初期圧力が変化した際の乱流火炎断面周長 および乱流燃焼速度に関して,より一層の検討を要する.

本研究では、有効乱れ強さを定めるしきい値 ka を与える 式(5)において、乱流火炎の直径の大きさの乱流渦までが 火炎に影響を及ぼすものと仮定して考察を行った.しかし ながら、火炎直径以上の大きさの渦も、ある程度、火炎面 に影響を及ぼすとも考えられる.有効乱れ強さにどの程度 の大きさの渦までを考慮するのが適当であるか、しきい値 ka などについても今後検討を要する.

4. まとめ

球状に伝播する予混合乱流火炎の乱流燃焼速度は,火炎 が伝播するにつれて増大し続ける.本研究では,火炎面に 乱れとして作用する乱流渦のスケールから定まる有効乱れ 強さを導入し,それと乱流燃焼速度および乱流火炎面形状 との関係を調べた. 乱流火炎面形状は, レーザートモグラ フ法を用いて撮影された乱流火炎の断層写真から求めた. 本研究で得られた結果は以下の通りである.

- 乱流燃焼速度と火炎が伸長を受けていないときの層流燃 焼速度との比 u_m(r_{sch})/u_l は、有効乱れ強さと火炎が伸長 を受けていないときの層流燃焼速度との比 u'_e/u_l が大き くなるにつれて大きくなった。
- 乱流火炎断面周長と平均円周長との比 *l_{lgp}/(2πr_{lgp})*は、有効乱れ強さと火炎が伸長を受けていないときの層流燃焼 速度との比 *u'_e/u_l* が大きくなるにつれて大きくなった. 乱流火炎断面周長と平均円周長との比 *l_{lgp}/(2πr_{lgp})*は、乱れによる火炎面積の増加率と相関を有するものと考えられる.すなわち、火炎が伝播するにつれて *u_{tn}(r_{sch})/u_l* が大きくなったのは、火炎が伝播するにつれて *u'_e/u_l* が大きくなり、乱れによる火炎面積の増加率が大きくなったためであると考えられる.

謝辞

本研究の一部は,科学研究費補助金 特別研究員奨励費 (課題番号 22・1886) により行われた.ここに記して,謝意 を表する.

References

- Kitagawa, T., Nakahara, T., Maruyama, K., Kado, K., Hayakawa, A. and Kobayashi, S., *Int J. Hydrogen Eng.* 33: 5842-5849 (2008).
- Hayakawa, A., Takeo, T., Miki, Y., Nagano, Y. and Kitagawa, T., *Proc. 8th AJTEC*.: AJTEC2011-44221 (2011).
- Hayakawa, A., Miki, Y., Nagano, Y. and Kitagawa, T., J. Thermal Sci. Tech. 7: 507-521 (2012).
- Kobayashi, H., Seyama, K., Hagiwara, H. and Ogami, Y., Proc. Combust. Inst. 30: 827-834 (2005).
- Yamamoto, K., Isii, S. and Ohnishi, M., Proc. Combust. Inst. 33: 1285-1292 (2011).
- Plessing, T., Kortschik, C., Peters, N., Mansour, M.S. and Cheng, R.K., *Proc. Combust. Inst.* 28: 359-366 (2000).
- Bradley, D., Lawes, M. and Mansour, M.S., *Combst. Flame*. 158: 123-138 (2011).
- Bradley, D., Haq, M.Z., Hicks, R.A., Kitagawa, T., Lawes, M., Sheppard, C.G.W. and Woolley, R., *Combst. Flame* 133: 415-430 (2003).
- Weiß, M., Zarzalis, N. and Suntz, R. Combust. Flame 154: 671-691 (2008).
- Kosaka, H., Nomura, Y., Nagaoka, M., Inagaki, M and Kubota, M., *Trans. JSAE*. (in Japanese) 41: 827-832 (2010).
- Abdel-Gayed, R.G., Bradley, D. and Lawes, M., Proc. R. Soc. Lond. A. 414: 398-413 (1987).
- 12. Bradley, D., Lau, A.K.C. and Lawes, M., Phil. Trans. R. Soc.

Lond. A. 338: 359-387 (1992).

- Williams, F.A., Combustion Theory, 2nd ed., Benjamin/ Cummings Publishing Company, Inc., 680 (1985).
- 14. Chen, Y.C., Proc. Combust. Inst. 32: 1771-1777 (2009).
- Shimura, M., Ueda, T., Choi, G.M., Tanahashi, M. and Miyauchi, T., *Proc. Combust. Inst.* 33: 775-782 (2011).
- 16. Filatyev, S.A., Driscoll, J.F., Carter, C.D. and Donbar, J.M, *Combust. Flame*, 141: 1-21 (2005).
- 17. Kwon, S., Wu, M.S., Driscoll, J.F. and Faeth, G.M., *Combust. Flame*, 88: 221-238 (1992).

- Tennekes, H. and Lumley, J.L., A First Course in Turbulence, MIT Press: 65-68 (1987).
- Peters, N., Turbulent Combustion, Cambridge University Press: 78-86 (2000).
- 20. Hinze, J.O., Turbulence, 2nd ed., McGraw-Hill Book Company: 208-209 (1975).
- Bradley, D., Lawes, M. and Mansour, M.S., *Proc. Combust. Inst.* 32: 1587-1593 (2009).
- 22. Kido, H., Kitagawa, T., Nakashima, K. and Kim, J.H., *JSME Int. J.*, Ser. II, 35: 421-427 (1992).