■原著論文/ORIGINAL PAPER■

過濃予混合気の高温空気燃焼における非定常火炎挙動の数値解析

Numerical Study on Unsteady Flame Behavior in High-Temperature Air Combustion of Rich-Premixed Gas

伊藤 慎太朗・山下 博史*・林 直樹

ITO, Shintaro, YAMASHITA, Hiroshi*, and HAYASHI, Naoki

名古屋大学大学院工学研究科 〒464-8603 名古屋市千種区不老町 Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603, Japan

2011 年 3 月 10 日受付; 2011 年 8 月 4 日受理/Received 10 March, 2011; Accepted 4 August, 2011

Abstract : Numerical simulation on the counterflow flame of methane-air rich-premixed gas with opposing high-temperature air is carried out by using rather complex chemistry. A sinusoidal fluctuation is added to the spout velocity in order to investigate unsteady flame behavior and to clarify the effects of various parameters on flame structure. First, the influences of average velocity and the fluctuation frequency of the spout velocity on flame structure are examined with Smooke's Skeletal chemical kinetics model. It is shown that both premixed and diffusion flames exist together and the phase lag increases with the increase in the fluctuation frequency of the spout velocity. Second, the effects of premixed flame and diffusion flame on unsteady behavior are examined by using "extended IYH-Skeletal chemical kinetics model" proposed in the present study. This novel model discriminates premixed-gas-originated oxygen atom X from opposing- air-originated oxygen atom Y, so that the consumption rates of oxygen molecules X_2 and Y_2 correspond to premixed and diffusion flames. It is found that the strength of diffusion flame monotonically changes corresponding to the increase of flame stretch, but the strength and location of premixed flame intricately changes corresponding to the change of spout velocity.

Key Words : Rich-premixed gas, High-temperature air, Counterflow, Unsteady behavior, Numerical simulation, Chemical kinetics model

1. 緒言

近年,エネルギー・環境問題が深刻化している.特に石 油等の化石燃料の枯渇,およびその燃焼時に排出される CO₂による地球温暖化,NO_x,SO_x,すす等による大気汚 染が問題視されている.そのため,身の回りの多くの燃焼 器の高効率化,低環境負荷化が求められ,広く研究・開発 が行われている.

実用燃焼器内の燃焼は乱流火炎であり,さらに,乱流火 炎は乱れにより火炎面が波打つことでその面積が増加する ことから高効率な燃焼が可能であるという特徴がある.そ のため乱流火炎の火炎構造を解明することは燃焼器の高効 率・低環境負荷化には必要不可欠であり,燃焼研究の主要 な課題の一つとされている.

店橋らはスーパーコンピュータを用いた水素・空気予混 合気の詳細素反応機構による三次元の直接数値計算 (3D-DNS) や, CH-OH PLIF とステレオ PIV を組み合わせた実

* Corresponding author. E-mail: yamashita@mech.nagoya-u.ac.jp

験により, 乱流火炎の局所構造や燃焼速度についての詳細 な検討を行っている[1-4]. 古川らは 3 つの受感部を有する 静電探針とレーザ流速計を使用して局所の乱流予混合火炎 のガス流速と火炎面の挙動の二次元同時計測を行ってお り, 最近では四つの受感部を有する静電探針を用いること で三次元的な計測も可能にしている[5-8]. また, Li らは高 い分解能を有する PLIF より CH, OH および CH₂O を同時 に計測することで, 乱流予混合火炎の局所的な火炎構造を 調べている[9].

しかし, 乱流火炎は非定常かつ多次元の複雑な現象であ り, その火炎構造に影響を与えるパラメータは非常に多い. このため, 3D-DNS や三次元計測では, 乱流火炎の火炎構 造に与えるパラメータの影響を分離して一つ一つ個別に取 り出して系統的に検討することは未だ非常に難しい. そこ で, Laminar flamelet model [10]の考え方に基づき, 対向流 火炎を用いた予混合および拡散火炎の基礎特性についての 検討が行われてきた[11-14]. 例えば, Dixon-Lewis ら[11]は 対向流予混合火炎において同じ未燃混合気を対向させ双子 火炎を形成させた場合と, 温度の低い既燃ガスを対向させ た場合とを比較し,可燃限界に及ぼす熱損失の影響につい て検討している.また,非定常対向流火炎の流入速度の変 動周波数に対する火炎の応答について,予混合および拡散 火炎について Sung ら[12]によって,また,拡散火炎につい て Egolfopoulos ら[13]によって検討が行われている.これ らの研究により,周波数の増加に伴う速度場と火炎の間の 位相遅れの増加や,火炎の変動の振幅の減少等について明 らかにされている.

しかしながら、これらの対向流火炎に対して得られた基 礎特性に関する結果を実際の火炎に適用するためには、対 向流火炎と実際の火炎を結合するパラメータが必要であ り, 著者らは Laminar flamelet model [10]に基づく組み合わ せ手法を提案している[15,16]. この手法では、乱流の三次 元性について検討することは困難であるが、3D-DNS に比 べ計算負荷を非常に小さくできるので詳細素反応機構を考 慮することが可能である. さらに火炎構造に影響を与える パラメータを一つ一つ個別に取り出すことも可能である. 林らは流入速度の流入方向成分に振動を付加した対向流の 非定常火炎の数値計算により、その火炎挙動に対する振動 の平均速度と周波数、対向する空気の温度の影響を一つ一 つ系統的に検討し、火炎構造が火炎面位置での酸素の質量 分率で定義した反応進行度や温度で定義した反応進行度の 勾配により整理できることを示した[17].加藤らは流入速 度に二次元的な振動を与えた非定常予混合火炎について検 討し、火炎面の伝播方向に注目し、火炎面位置での酸素の 質量分率で定義された反応進行度と、その火炎面に垂直方 向の勾配により火炎の挙動を分類できることを示した[18]. さらに、野々村らは流入速度に二次元的な振動を与えた非 定常予混合火炎において,局所消炎のメカニズムや乱流燃 焼速度と火炎長さに相関があることを示した[19]. これら の研究はメタンー空気希薄予混合火炎を対象として行われ ている。

以上のように,対向流予混合火炎について,速度の変動 に対する火炎の応答について,様々な側面から検討が行わ れている。一方で、過濃予混合気と高温空気の対向流燃焼 場では予混合火炎だけではなく拡散火炎も同時に形成され ていると考えられる、このような火炎は、非常に強い乱流 燃焼場を作り出すのに好都合であると考える、本研究では, 過濃予混合気と高温空気の対向流燃焼場において、流入速 度を振動的に与えることで,その平均速度,周波数,振幅, 空気の温度などのパラメータを変えたときの火炎挙動につ いて調べた、次に、予混合気中の酸素と、対向する空気中 の酸素がどのような割合で消費されているかを調べること は火炎構造を検討する上で興味深い. そこで,本研究では, Smooke らの Skeletal 素反応機構[20]を拡張し、予混合気中 および対向する空気流中における酸素原子を区別した「拡 張 IYH-Skeletal 素反応機構」を新たに考案した. この反応 機構を用い、火炎全体に与える拡散火炎の影響について検 討した.

Fig.1 Schematic of analytical model

2. 解析モデルおよび計算方法

2.1. 解析モデル

本研究で用いた平面二次元対向流予混合火炎の解析モデルを図1に示す.流れ場については二次元のポテンシャル流とし,温度場および濃度場においては相似解が適用できるものとする[17,21]. 予混合気の温度および濃度の境界条件を設定するために,仮想的に30mmだけ離れた二つのノズルが対向しているものとし,予混合気側ノズルの中心を原点として,ノズル軸方向の座標をxとし,速度成分をuとする.予混合気側ノズルから当量比1.2,温度300Kのメタン・空気予混合気を速度 u_0 で噴出させ,また対向するノズルからは温度1500Kあるいは1000Kに予熱した高温空気を速度 $-u_N$ 噴出させる. u_N はよどみ点がおよそ中央断面のx = 15mmの位置になるように $u_N = 3u_0$ とした. 圧力は大気圧とした.

予混合気側のノズル出口平均流速を u_m として,出口速 度に正弦振動 $u_0 = u_m \{1 + A \cdot \sin(2\pi f)\}$ を加え,十分時間が経 過した後の準定常状態について検討する.ここで,振幅A= 0.75, 1.0,振動数 $f = 1 \sim 250$ Hz の条件で数値解析を行っ た.また, $u_0 = 0.5 \sim 24$ m/s の定常解についても解析を行っ た.ここで,速度が極めて遅い場合には逆火が起きてしま うため $u_0 \leq 0.5$ m/s の定常火炎については解析を行ってい ない.また, $u_0 = 0.5 \sim 24$ m/s の定常状態の条件について は対向する気体に空気ではなく窒素を用いた定常解につい ても解析を行った.

2.2. 化学反応機構

化学反応機構には Smooke らのメタン-空気系 Skeletal 素反応機構 (16 化学種, 25 素反応式) [20]を用いた.

さらに、予混合気中の酸素と、対向する空気中の酸素が どのような割合で消費されているかを調べ、予混合火炎と 拡散火炎が共存するような燃焼場においてこれら二つの火 炎を識別し、それらの強度を別々に検討するために、「拡 張 IYH-Skeletal 素反応機構」を新たに考案した.すなわち、 上記の Smooke らの Skeletal 素反応機構において、酸素原 子 O を予混合気中の酸素に由来するものを X、および対向 する空気中の酸素に由来するものを Y として二つに分け、 別の化学種として取り扱うことを考えた.例えば O₂ であ れば、 X_2 , Y_2 , XY の 3 種類に区別される. このように酸素 原子を含む化学種は用いる酸素原子の組み合わせの数だけ 派生し、用いる化学種の数は 31 個となった. ただし、派 生した化学種の熱力学定数および輸送係数はもとの化学種 と同じと仮定した. 化学種の増加に伴い素反応式も増加し、 89 組となった. 酸素原子が含まれる化学種の素反応式につ いては、その反応物と生成物の酸素原子の組み合わせの数 だけ存在する. また、そもそも通常の素反応機構において 酸素原子が予混合気流側あるいは高温空気流側の酸素分子 のどちらに由来しているのかは考慮されていないので、本 反応機構で用いられる頻度係数、温度係数、温度次数、活 性化エネルギーは元の Skeletal 素反応機構と同じと仮定し た. この「拡張 IYH-Skeletal 素反応機構」で考慮された化 学種と素反応式を表 1 および表 2 に示す. 特に、表 2 の最 右欄には後で説明する「実現割合 P_k 」を併記した.

実現割合 P_k は、各種の物理量が X 原子と Y 原子を区別 せずにすべて O 原子と見なしたときに元の Smooke らの Skeletal 素反応機構の場合と同じ値になるように設定され、 その決定方法は以下の通りである.

Table 1 Species in extended IYH-Skeletal reaction mechanism

CH_4	X2	Y ₂	XY	$\mathrm{H}_{2}\mathrm{X}$	H_2Y	CX_2	CY ₂
CXY	Н	Х	Y	XH	YH	HX_2	HY_2
HXY	H_2	СХ	CY	H_2X_2	H_2Y_2	H_2XY	HCX
НСҮ	CH_2X	CH_2Y	CH3	CH ₃ X	CH ₃ Y	N_2	

Table 2 Extended IYH-Skeletal reaction mechanism

k	Reaction	B_k	α_k	E_k	P_k
1f	$H+X_2 \rightarrow XH+X$	2.000E+14	0.000	16800.0	1
1b	$XH{+}X{\rightarrow}H{+}X_2$	1.575E+13	0.000	690.0	1
2f	$H+XY \rightarrow XH+Y$	2.000E+14	0.000	16800.0	1/2
2b	$XH+Y \rightarrow H+XY$	1.575E+13	0.000	690.0	1
3f	$H+XY \rightarrow YH+X$	2.000E+14	0.000	16800.0	1/2
3b	$YH+X \rightarrow H+XY$	1.575E+13	0.000	690.0	1
4f	$H+Y_2 \rightarrow YH+Y$	2.000E+14	0.000	16800.0	1
4b	$YH+Y \rightarrow H+Y_2$	1.575E+13	0.000	690.0	1
5f	$X{+}H_2{\rightarrow}XH{+}H$	1.800E+10	1.000	8826.0	1
5b	$XH{+}H{\rightarrow}X{+}H_2$	8.000E+09	1.000	6760.0	1
6f	$Y{+}H_2{\longrightarrow}YH{+}H$	1.800E+10	1.000	8826.0	1
6b	$\rm YH{+}H{\rightarrow}\rm Y{+}H_2$	8.000E+09	1.000	6760.0	1
7f	$\rm H_2{+}XH{\rightarrow}H_2X{+}H$	1.170E+09	1.300	3626.0	1
7b	$H_2X+H \rightarrow H_2+XH$	5.090E+09	1.300	18588.0	1
8f	$\rm H_2 {+} \rm Y \rm H {\rightarrow} \rm H_2 \rm Y {+} \rm H$	1.170E+09	1.300	3626.0	1
8b	$\rm H_2Y{+}H{\rightarrow}H_2{+}YH$	5.090E+09	1.300	18588.0	1
9f	$XH{+}XH{\rightarrow}X{+}H_2X$	6.000E+08	1.300	0.0	1
9b	$X{+}H_2X{\rightarrow}XH{+}XH$	5.900E+09	1.300	17029.0	1
10f	$XH{+}YH{\rightarrow}X{+}H_2Y$	6.000E+08	1.300	0.0	1
10b	$X{+}H_2Y{\rightarrow}XH{+}YH$	5.900E+09	1.300	17029.0	1
11f	$XH{+}YH{\rightarrow}Y{+}H_2X$	6.000E+08	1.300	0.0	1
11b	$Y{+}H_2X{\rightarrow}XH{+}YH$	5.900E+09	1.300	17029.0	1
12f	$\rm YH{+}\rm YH{\rightarrow}\rm Y{+}\rm H_{2}\rm Y$	6.000E+08	1.300	0.0	1
12b	$Y{+}H_2Y{\rightarrow}YH{+}YH$	5.900E+09	1.300	17029.0	1

13	$H+X_2+M \rightarrow HX_2+M$ ^a	2.300E+18	-0.800	0.0	1
14	H+XY+M→HXY+M ^a	2.300E+18	-0.800	0.0	1
15	$H+Y_2+M \rightarrow HY_2+M$ ^a	2.300E+18	-0.800	0.0	1
16	$H+HX_2 \rightarrow XH+XH$	1.500E+14	0.000	1004.0	1
17	$H+HXY \rightarrow XH+YH$	1.500E+14	0.000	1004.0	1
18	$H+HY_2 \rightarrow YH+YH$	1.500E+14	0.000	1004.0	1
19	$H+HX_2 \rightarrow H_2+X_2$	2.500E+13	0.000	700.0	1
20	$H+HXY \rightarrow H_2+XY$	2.500E+13	0.000	700.0	1
21	$H{+}HY_2{\rightarrow}H_2{+}Y_2$	2.500E+13	0.000	700.0	1
22	$XH{+}HX_2{\rightarrow}H_2X{+}X_2$	2.000E+13	0.000	100.0	1
23	$XH{+}HXY{\rightarrow}H_2X{+}XY$	2.000E+13	0.000	100.0	1/2
24	$XH{+}HXY{\rightarrow}H_2Y{+}X_2$	2.000E+13	0.000	100.0	1/2
25	$XH{+}HY_2{\rightarrow}H_2X{+}Y_2$	2.000E+13	0.000	100.0	1/2
26	$XH + HY_2 \rightarrow H_2Y + XY$	2.000E+13	0.000	100.0	1/2
27	$YH + HXY \rightarrow H_2Y + XY$	2.000E+13	0.000	100.0	1/2
28	$YH{+}HX_2{\rightarrow}H_2X{+}XY$	2.000E+13	0.000	100.0	1/2
29	$YH+HX_2 \rightarrow H_2Y+X_2$	2.000E+13	0.000	100.0	1/2
30	$YH \text{+}HXY \text{-}H_2X \text{+}Y_2$	2.000E+13	0.000	100.0	1/2
31	$YH + HY_2 \rightarrow H_2Y + Y_2$	2.000E+13	0.000	100.0	1
32f	$CX+XH\rightarrow CX_2+H$	1.510E+07	1.300	-758.0	1
32b	CX_2 +H \rightarrow CX+XH	1.570E+09	1.300	22337.0	1
33f	СХ+ҮН→СХҮ+Н	1.510E+07	1.300	-758.0	1
33b	CXY+H→CX+YH	1.570E+09	1.300	22337.0	1/2
34f	СҮ+ХН→СХҮ+Н	1.510E+07	1.300	-758.0	1
34b	$CXY+H\rightarrow CY+XH$	1.570E+09	1.300	22337.0	1/2
35f	$CY+YH\rightarrow CY_2+H$	1.510E+07	1.300	-758.0	1
35b	$CY_2+H\rightarrow CY+YH$	1.570E+09	1.300	22337.0	1
36f	$CH_4+(M) \rightarrow CH_3+H+(M)^{b}$	6.300E+14	0.000	104000.	1
36b	$CH_3+H+(M)\rightarrow CH_4+(M)^{b}$	5.200E+12	0.000	-1310.0	1
37f	$CH_4+H\rightarrow CH_3+H_2$	2.200E+04	3.000	8750.0	1
37b	$CH_3+H_2 \rightarrow CH_4+H$	9.570E+02	3.000	8750.0	1
38f	$\rm CH_4{+}XH{\rightarrow}\rm CH_3{+}H_2X$	1.600E+06	2.100	2460.0	1
38b	$CH_3 {+} H_2 X {\rightarrow} CH_4 {+} XH$	3.020E+05	2.100	17422.0	1
39f	$\rm CH_4{+}\rm YH{\rightarrow}\rm CH_3{+}\rm H_2\rm Y$	1.600E+06	2.100	2460.0	1
39b	$CH_3 {+} H_2 Y {\rightarrow} CH_4 {+} YH$	3.020E+05	2.100	17422.0	1
40	$CH_3{+}X{\rightarrow}CH_2X{+}H$	6.800E+13	0.000	0.0	1
41	$\rm CH_3{+}Y{\rightarrow}\rm CH_2Y{+}H$	6.800E+13	0.000	0.0	1
42	$CH_2X+H\rightarrow HCX+H_2$	2.500E+13	0.000	0.0	1
43	$CH_2Y+H\rightarrow HCY+H_2$	2.500E+13	0.000	0.0	1
44	$CH_2X{+}XH{\rightarrow}HCX{+}H_2X$	3.000E+13	0.000	1195.0	1
45	$CH_2X+YH \rightarrow HCX+H_2Y$	3.000E+13	0.000	1195.0	1/2
46	$CH_2X+YH \rightarrow HCY+H_2X$	3.000E+13	0.000	1195.0	1/2
47	$CH_2Y+XH\rightarrow HCX+H_2Y$	3.000E+13	0.000	1195.0	1/2
48	$CH_2Y+XH\rightarrow HCY+H_2X$	3.000E+13	0.000	1195.0	1/2
49	$CH_2Y+YH \rightarrow HCY+H_2Y$	3.000E+13	0.000	1195.0	1
50	$HCX+H\rightarrow CX+H_2$	4.000E+13	0.000	0.0	1
51	$HCY+H\rightarrow CY+H_2$	4.000E+13	0.000	0.0	1
52	HCX+M→CX+H+M	1.600E+14	0.000	14700.0	1
53	HCY+M→CY+H+M	1.600E+14	0.000	14700.0	1
54	$CH_3+X_2 \rightarrow CH_3X+X$	7.000E+12	0.000	25652.0	1
55	$CH_3+XY \rightarrow CH_3X+Y$	7.000E+12	0.000	25652.0	1/2
56	$CH_3+XY \rightarrow CH_3Y+X$	7.000E+12	0.000	25652.0	1/2
57	$CH_3+Y_2 \rightarrow CH_3Y+Y$	7.000E+12	0.000	25652.0	1
58	$CH_3X+H\rightarrow CH_2X+H_2$	2.000E+13	0.000	0.0	1
59	$CH_3Y+H\rightarrow CH_2Y+H_2$	2.000E+13	0.000	0.0	1

2	/4	

60	$CH_3X{+}M{\rightarrow}CH_2X{+}H{+}M$	2.400E+13	0.000	28818.0	1
61	$CH_3Y{+}M{\rightarrow}CH_2Y{+}H{+}M$	2.400E+13	0.000	28818.0	1
62	$HX_2 \!\!+\!\!HX_2 \!\!\rightarrow\!\! H_2X_2 \!\!+\!\! X_2$	2.000E+12	0.000	0.0	1
63	$HX_2 \text{+} HXY {\rightarrow} H_2X_2 \text{+} XY$	2.000E+12	0.000	0.0	1
64	$HX_2 \text{+} HXY {\rightarrow} H_2XY \text{+} X_2$	2.000E+12	0.000	0.0	1
65	$HX_2 \!\!+\!\!HY_2 \!\!\rightarrow\!\! H_2X_2 \!\!+\!\!Y_2$	2.000E+12	0.000	0.0	2/3
66	$HX_2 \!\!+\!\!HY_2 \!\!\rightarrow\!\! H_2XY \!\!+\!\!XY$	2.000E+12	0.000	0.0	2/3
67	$HX_2 {+} HY_2 {\rightarrow} H_2Y_2 {+} X_2$	2.000E+12	0.000	0.0	2/3
68	$HY_2 \!\!+\!\! HXY \!\!\rightarrow\!\! H_2XY \!\!+\!\! Y_2$	2.000E+12	0.000	0.0	1
69	$HY_2 \!\!+\!\! HXY \!\!\rightarrow\!\! H_2Y_2 \!\!+\!\! XY$	2.000E+12	0.000	0.0	1
70	$HY_2 \!\!+\!\!HY_2 \!\!\rightarrow\!\! H_2Y_2 \!\!+\!\!Y_2$	2.000E+12	0.000	0.0	1
71	$HXY \!\!+\!\!HXY \!\!\rightarrow\!\! H_2X_2 \!\!+\!\!Y_2$	2.000E+12	0.000	0.0	1/3
72	$HXY \!\!+\!\! HXY \!\!\rightarrow\!\! H_2XY \!\!+\!\! XY$	2.000E+12	0.000	0.0	1/3
73	$HXY \!\!+\!\!HXY \!\!\rightarrow\!\! H_2Y_2 \!\!+\!\! X_2$	2.000E+12	0.000	0.0	1/3
74f	$H_2X_2\!\!+\!\!M\!\!\rightarrow\!\!XH\!\!+\!\!XH\!\!+\!\!M$	1.300E+17	0.000	45500.0	1
74b	$XH{+}XH{+}M{\rightarrow}H_2X_2{+}M$	9.860E+14	0.000	-5070.0	1
75f	$\rm H_2XY{+}M{\rightarrow}XH{+}YH{+}M$	1.300E+17	0.000	45500.0	1
75b	$XH{+}YH{+}M{\rightarrow}H_2XY{+}M$	9.860E+14	0.000	-5070.0	2
76f	$\mathrm{H}_{2}\mathrm{Y}_{2}\!\!+\!\!M\!\!\rightarrow\!\!\mathrm{YH}\!\!+\!\!\mathrm{YH}\!\!+\!\!M$	1.300E+17	0.000	45500.0	1
76b	$YH{+}YH{+}M{\rightarrow}H_2Y_2{+}M$	9.860E+14	0.000	-5070.0	1
77f	$H_2X_2\!\!+\!\!XH\!\!\rightarrow\!\!H_2X\!\!+\!\!HX_2$	1.000E+13	0.000	1800.0	1
77b	$H_2X{+}HX_2{\rightarrow}H_2X_2{+}XH$	2.860E+13	0.000	32790.0	1
78f	$H_2X_2 \!\!+\!\! YH \!\!\rightarrow\!\! H_2X \!\!+\!\! HXY$	1.000E+13	0.000	1800.0	1/2
78b	$\mathrm{H}_{2}\mathrm{X}{+}\mathrm{H}\mathrm{X}\mathrm{Y}{\rightarrow}\mathrm{H}_{2}\mathrm{X}_{2}{+}\mathrm{Y}\mathrm{H}$	2.860E+13	0.000	32790.0	1/2
79f	$H_2X_2\!\!+\!\!YH\!\!\rightarrow\!\!H_2Y\!\!+\!\!HX_2$	1.000E+13	0.000	1800.0	1/2
79b	$\mathrm{H}_{2}\mathrm{Y}\text{+}\mathrm{H}\mathrm{X}_{2}\text{\longrightarrow}\mathrm{H}_{2}\mathrm{X}_{2}\text{+}\mathrm{Y}\mathrm{H}$	2.860E+13	0.000	32790.0	1/2
80f	$\rm H_2XY{+}XH{\rightarrow}H_2X{+}HXY$	1.000E+13	0.000	1800.0	1/2
80b	$\mathrm{H}_{2}\mathrm{X}{+}\mathrm{H}\mathrm{X}\mathrm{Y}{\rightarrow}\mathrm{H}_{2}\mathrm{X}\mathrm{Y}{+}\mathrm{X}\mathrm{H}$	2.860E+13	0.000	32790.0	1/2
81f	$\rm H_2XY{+}XH{\rightarrow}H_2Y{+}HX_2$	1.000E+13	0.000	1800.0	1/2
81b	$\mathrm{H}_{2}\mathrm{Y}\text{+}\mathrm{H}\mathrm{X}_{2}\text{\longrightarrow}\mathrm{H}_{2}\mathrm{X}\mathrm{Y}\text{+}\mathrm{X}\mathrm{H}$	2.860E+13	0.000	32790.0	1/2
82f	$\mathrm{H}_{2}\mathrm{X}\mathrm{Y}{+}\mathrm{Y}\mathrm{H}{\rightarrow}\mathrm{H}_{2}\mathrm{X}{+}\mathrm{H}\mathrm{Y}_{2}$	1.000E+13	0.000	1800.0	1/2
82b	$\mathrm{H}_{2}\mathrm{X}{+}\mathrm{H}\mathrm{Y}_{2}{\rightarrow}\mathrm{H}_{2}\mathrm{X}\mathrm{Y}{+}\mathrm{Y}\mathrm{H}$	2.860E+13	0.000	32790.0	1/2
83f	$\rm H_2XY{+}YH{\rightarrow}H_2Y{+}HXY$	1.000E+13	0.000	1800.0	1/2
83b	$\rm H_2Y{+}HXY{\rightarrow}H_2XY{+}YH$	2.860E+13	0.000	32790.0	1/2
84f	$\mathrm{H}_{2}\mathrm{Y}_{2}\!\!+\!\!\mathrm{X}\mathrm{H}\!\!\rightarrow\!\!\mathrm{H}_{2}\mathrm{X}\!\!+\!\!\mathrm{H}\mathrm{Y}_{2}$	1.000E+13	0.000	1800.0	1/2
84b	$\mathrm{H}_{2}\mathrm{X}{+}\mathrm{H}\mathrm{Y}_{2}{\rightarrow}\mathrm{H}_{2}\mathrm{Y}_{2}{+}\mathrm{X}\mathrm{H}$	2.860E+13	0.000	32790.0	1/2
85f	$H_2Y_2 \!\!+\!\! XH \!\!\rightarrow\!\! H_2Y \!\!+\!\! HXY$	1.000E+13	0.000	1800.0	1/2
85b	$H_2Y {+} HXY {\rightarrow} H_2Y_2 {+} XH$	2.860E+13	0.000	32790.0	1/2
86f	$H_2Y_2\!\!+\!\!YH\!\!\rightarrow\!\!H_2Y\!\!+\!\!HY_2$	1.000E+13	0.000	1800.0	1
86b	$H_2Y {+} HY_2 {\rightarrow} H_2Y_2 {+} YH$	2.860E+13	0.000	32790.0	1
87	$XH{+}H{+}M{\rightarrow}H_2X{+}M ^a$	2.200E+22	-2.000	0.00	1
88	$YH{+}H{+}M{\rightarrow}H_2Y{+}M^{~a}$	2.200E+22	-2.000	0.00	1
89	$H+H+M\rightarrow H_2+M^{a}$	1.800E+18	-1.000	0.00	1

(1) 反応式の反応物側

・酸素原子をすべて同一のOと考えたとき、反応物がすべて異なる化学種である場合

全ての反応式の反応物側実現割合は1となる.

・酸素原子をすべて同一のOと考えたとき,反応物が2個の同じ化学種である場合

酸素原子を X と Y で区別して,反応物が 2 個の同じ 化学種である反応式の反応物側実現割合は 1 となる. 酸素原子を X と Y で区別して,反応物が異なる化学 種である反応式の反応物側実現割合は 2 となる. (2) 反応式の生成物側

・生成物の組み合わせ数が n の場合,生成物側実現割合は 便宜的に 1/n とする.

(3) 反応式全体

・反応式全体の実現割合は、反応物側実現割合と生成物側 実現割合の積となる。

この実現割合 P_k を用いて、各素反応式のモル生成速度 $\hat{\omega}_k$ は次式で表される.

$$\hat{\omega}_{k}\Big|_{IYH-Skeletal} = P_{k}k_{k}\prod_{i}\left(\rho Y_{i} / m_{i}\right)^{\nu_{i,k}^{\prime}}$$
(1)

ここで、 k_k は比反応速度定数、 ρ は密度、 $v'_{i,k}$ 、 Y_i 、および m_i は反応物の量論係数、質量分率およびモル質量である。

例えば, Smooke らの Skeletal 素反応機構における素反応 式 {文献 [20] の素反応式番号 R21}

$\mathrm{HO_2}\text{+}\mathrm{HO_2} \!\rightarrow\!\! \mathrm{H_2O_2}\text{+}\mathrm{O_2}$

に対応する拡張 IYH-Skeletal 素反応機構における素反応式 は下記の R62~R73 の 12 個である. 実現割合を右側に付 記した.

R62: 1	$HX_2 + HX_2 \rightarrow H_2X_2 + X_2$	1
R63: 1	$HX_2 + HXY \rightarrow H_2X_2 + XY$	1
R64: 1	$HX_2 + HXY \rightarrow H_2XY + X_2$	1
R65: 1	$HX_2 + HY_2 \rightarrow H_2X_2 + Y_2$	2/3
R66: 1	$HX_2 + HY_2 \rightarrow H_2XY + XY$	2/3
R67: 1	$HX_2 + HY_2 \rightarrow H_2Y_2 + X_2$	2/3
R68: 1	$HY_2 + HXY \rightarrow H_2XY + Y_2$	1
R69: 1	HY ₂ +HXY→H ₂ Y ₂ +XY	1
R70: 1	$HY_2 + HY_2 \rightarrow H_2Y_2 + Y_2$	1
R71: 1	$HXY+HXY\rightarrow H_2X_2+Y_2$	1/3
R72: 1	$HXY+HXY\rightarrow H_2XY+XY$	1/3
R73: 1	$HXY+HXY\rightarrow H_2Y_2+X_2$	1/3

ここで, R65, R66 および R67 について考えると, これら の素反応式では, 反応物は同一であるが生成物が異なるの で,反応物側実現割合は決定方法 (1)の最後の場合に対応 し2であり,生成物側実現割合は決定方法 (2)のn=3の場 合であり 1/3 である.したがって,これらの素反応式全体 の実現割合 P_k は 2×(1/3)=2/3 となる.なお,この実現割合 P_k の決定方法の妥当性は上式 (1)の質量分率において酸素 原子 O を X と Y に区別しない場合と区別した場合につい て展開した式を比較することによって以下のように確認で きる.

Smooke らの Skeletal 素反応機構における R21 のモル生 成速度は次式で表される.

上式の Y_{HO2} は次式で表される.

$$Y_{\rm HO2} = Y_{\rm HX2} + Y_{\rm HY2} + Y_{\rm HXY}$$

この式を代入して展開すると次式が得られる.

$$\begin{split} \hat{\omega}_{21} |_{\text{Skeletal}} &= k_{21} \left(\frac{\rho(Y_{\text{HX2}} + Y_{\text{HY2}} + Y_{\text{HXY}})}{m_{\text{HO2}}} \right)^{2} \\ &= k_{21} \left(\frac{\rho}{m_{\text{HO2}}} \right)^{2} \left\{ Y_{\text{HX2}}^{2} + Y_{\text{HY2}} + Y_{\text{HXY}} + 2Y_{\text{HX2}}Y_{\text{HY2}} \right\}^{2} \\ &= k_{21} \left(\frac{\rho}{m_{\text{HO2}}} \right)^{2} \left\{ Y_{\text{HX2}}^{2} + 2Y_{\text{HX2}}Y_{\text{HXY}} + 2Y_{\text{HX2}}Y_{\text{HXY}} \right) + 3 \left(\frac{2}{3} \cdot Y_{\text{HX2}}Y_{\text{HY2}} \right) \\ &= k_{21} \left(\frac{\rho}{m_{\text{HO2}}} \right)^{2} \left\{ \left(1 \cdot Y_{\text{HX2}}^{2} \right) + 2 \left(1 \cdot Y_{\text{HX2}}Y_{\text{HXY}} \right) + 3 \left(\frac{2}{3} \cdot Y_{\text{HX2}}Y_{\text{HY2}} \right) \right\} \\ &= k_{21} \left(\frac{\rho}{m_{\text{HO2}}} \right)^{2} \left\{ Y_{\text{HX2}}^{2} \right)^{2} \left\{ Y_{\text{HX2}}^{2} \right\} \\ &= k_{21} \left(\frac{\rho}{m_{\text{HO2}}} \right)^{2} \left\{ Y_{\text{HX2}}^{2} \right)^{2} \left(Y_{\text{HX2}}^{2} \right)^{2} \left(Y_{\text{HX2}}^{2} \right)^{2} \right\} \\ &= 1 \cdot k_{21} \left(\frac{\rho}{m_{\text{HO2}}} \right)^{2} \left(Y_{\text{HX2}}^{2} \right)^{2} \cdots \hat{\omega}_{62} \right|_{\text{IYH-Skeletal}} \\ &+ 1 \cdot k_{21} \left(\frac{\rho}{m_{\text{HO2}}} \right)^{2} \left(Y_{\text{HX2}}^{2} \right)^{2} \cdots \hat{\omega}_{63} \right|_{\text{IYH-Skeletal}} \\ &+ \frac{2}{3} \cdot k_{21} \left(\frac{\rho}{m_{\text{HO2}}} \right)^{2} \left(Y_{\text{HX2}}^{2} \right)^{2} \cdots \hat{\omega}_{66} \right|_{\text{IYH-Skeletal}} \\ &+ \frac{2}{3} \cdot k_{21} \left(\frac{\rho}{m_{\text{HO2}}} \right)^{2} \left(Y_{\text{HX2}}^{2} \right)^{2} \cdots \hat{\omega}_{66} \right|_{\text{IYH-Skeletal}} \\ &+ 1 \cdot k_{21} \left(\frac{\rho}{m_{\text{HO2}}} \right)^{2} \left(Y_{\text{HX2}}^{2} \right)^{2} \cdots \hat{\omega}_{66} \right|_{\text{IYH-Skeletal}} \\ &+ 1 \cdot k_{21} \left(\frac{\rho}{m_{\text{HO2}}} \right)^{2} \left(Y_{\text{HX2}}^{2} \right)^{2} \cdots \hat{\omega}_{66} \right|_{\text{IYH-Skeletal}} \\ &+ 1 \cdot k_{21} \left(\frac{\rho}{m_{\text{HO2}}} \right)^{2} \left(Y_{\text{HX2}}^{2} \right)^{2} \cdots \hat{\omega}_{66} \right|_{\text{IYH-Skeletal}} \\ &+ 1 \cdot k_{21} \left(\frac{\rho}{m_{\text{HO2}}} \right)^{2} \left(Y_{\text{HX2}}^{2} \right)^{2} \cdots \hat{\omega}_{70} \right|_{\text{IYH-Skeletal}} \\ &+ 1 \cdot k_{21} \left(\frac{\rho}{m_{\text{HO2}}} \right)^{2} \left(Y_{\text{HX2}}^{2} \right)^{2} \cdots \hat{\omega}_{70} \right|_{\text{IYH-Skeletal}} \\ &+ \frac{1}{3} \cdot k_{21} \left(\frac{\rho}{m_{\text{HO2}}} \right)^{2} \left(Y_{\text{HXY}}^{2} \right)^{2} \cdots \hat{\omega}_{70} \right|_{\text{IYH-Skeletal}} \\ &+ \frac{1}{3} \cdot k_{21} \left(\frac{\rho}{m_{\text{HO2}}} \right)^{2} \left(Y_{\text{HXY}^{2} \right)^{2} \cdots \hat{\omega}_{70} \right|_{\text{IYH-Skeletal}} \\ &+ \frac{1}{3} \cdot k_{21} \left(\frac{\rho}{m_{\text{HO2}}} \right)^{2} \left(Y_{\text{HXY}}^{2} \right)^{2} \cdots \hat{\omega}_{70} \right|_{\text{IYH-Skeletal}} \\ &+ \frac{1}{3} \cdot k_{21} \left(\frac{\rho}{m_{\text{HO2}}} \right)^{2} \left(Y_{\text{HXY}^{2} \right)^{2} \cdots \hat{\omega}_{70} \right|_{$$

このように、前述の実現割合の決定方法に従って実現割 合を決定すれば、Smooke らの Skeletal 素反応機構における R21 のモル生成速度が、拡張 IYH-Skeletal 素反応機構にお ける対応する素反応式 R62~R73 のモル生成速度の和で表

Table 3 Modified extended IYH-Skeletal reaction mechanism

k	Reaction	B_k	α_k	E_k	P_k
23	$XH+HXY \rightarrow H_2X+XY$	2.000E+13	0.000	100.0	1
24	$XH+HXY \rightarrow H_2Y+X_2$	2.000E+13	0.000	100.0	0
25	$XH+HY_2 \rightarrow H_2X+Y_2$	2.000E+13	0.000	100.0	1
26	$XH+HY_2 \rightarrow H_2Y+XY$	2.000E+13	0.000	100.0	0
27	$YH+HXY\rightarrow H_2Y+XY$	2.000E+13	0.000	100.0	1
28	$YH+HX_2 \rightarrow H_2X+XY$	2.000E+13	0.000	100.0	0
29	$YH+HX_2 \rightarrow H_2Y+X_2$	2.000E+13	0.000	100.0	1
30	$YH+HXY \rightarrow H_2X + Y_2$	2.000E+13	0.000	100.0	0
65	$HX_2 + HY_2 \rightarrow H_2X_2 + Y_2$	2.000E+12	0.000	0.0	1
66	$HX_2+HY_2 \rightarrow H_2XY+XY$	2.000E+12	0.000	0.0	0
67	$HX_2+HY_2 \rightarrow H_2Y_2+X_2$	2.000E+12	0.000	0.0	1
71	$HXY + HXY \rightarrow H_2X_2 + Y_2$	2.000E+12	0.000	0.0	0
72	$HXY+HXY \rightarrow H_2XY+XY$	2.000E+12	0.000	0.0	1
73	$HXY+HXY \rightarrow H_2Y_2+X_2$	2.000E+12	0.000	0.0	0

Table 4 Examination of IYH-Skeletal reaction mechanism

<i>x</i> (mm)	H_2X_2	H_2XY	$\mathrm{H}_{2}\mathrm{Y}_{2}$	H_2O_2
17.775	0.545505E-4	0.476233E-6	0.651571E-7	0.550919E-4
(H ₂ X ₂)	0.545805E-4	0.416427E-6	0.949982E-7	0.550919E-4
18.315	0.597207E-6	0.119741E-5	0.606361E-6	0.240098E-5
(H ₂ XY)	0.597174E-6	0.119747E-5	0.606330E-6	0.240097E-5
18.735	0.402043E-7	0.516776E-6	0.169274E-5	0.224972E-5
(H ₂ Y ₂)	0.401833E-7	0.516772E-6	0.169276E-5	0.224972E-5

される。ただし、本研究の各素反応式の実現割合の決定方 法は十分条件であって,必ずしも必要条件ではない.特に, 決定方法 (2) では、単純に「数学 (順列・組み合わせ) 的に」 同じ確率で実現するという意味で,近似的 (便宜的) に同一 とした。しかしながら、化学反応論的に考えると、たとえ ば R65, R66, R67の実現割合を同一の 2/3 と考えることは無 理があり, R66 の素反応は実現し難い. したがって, R65, R66, R67 の実現割合を「極端に」1, 0, 1 とすることも考 えられる. このように,実現割合を化学反応論的に一部「極 端に」修正したものを表3に示す.この修正された拡張 IYH-Skeletal 素反応機構を用いて計算した H₂X₂, H₂XY, H₂Y₂ およびそれらの和 H₂O₂ の質量分率について,各化学 種のピーク位置における値を、修正していない場合と比較 して表4に示す.上段が修正していない場合,下段が修正 した場合の値である.影響が直接現れると考えられるこれ らの値でもピーク値はほとんど差異がないことがわかる. もちろん化学反応論的に実現確率が合理的に推定できるな らばその知見を組み込んで「より正しい拡張」を行うこと を次の段階として考える予定である.

なお、この拡張 IYH-Skeletal 素反応機構は分子中の酸素 原子を X, Y の 2 種類に分けていること以外に Smooke らの Skeletal 素反応機構と違いはない.本研究で提案した方法 によれば、数学的に当然のこととして、両者の結果は速度 場、温度場のみならず、濃度場で酸素原子に関係ない量や、 X と Y について和をとった量はすべて一致するはずであ

Case	A	<i>T</i> _N [K]	<i>u</i> _m [m/s]	Kind of gas	Reaction mechanism
				(right side nozzle)	
А	0 (steady flow)	1500	0.5~24	Air	Smooke's Skeletal
В	0 (steady flow)	1500	0.5~24	N_2	Smooke's Skeletal
С	0 (steady flow)	1000	1.25~8.75	Air	Smooke's Skeletal
D-1~250	1	1500	12	Air	Smooke's Skeletal
E-1~250	0.75	1500	12	Air	Smooke's Skeletal
F-1~250	0.75	1000	5	Air	Smooke's Skeletal
G-10	1	1500	12	Air	Extended IYH-Skeletal

Table 5 Condition of calculation

り、実際に一致することを確かめた.

2.3. 熱力学定数および輸送係数

熱力学定数については CHEMKIN データベース[22,23]か ら求めた. 輸送係数については, Smooke らの Simplified Transport Model [20]を用いた.

2.4. 計算手法

対流項の差分化には一次風上差分,時間展開については Euler の完全陰解法を適用し,時間刻みは定常解および非 定常解のfが 10 Hz 以下の条件については $t = 1 \mu s$, fが 10 Hz より大きい条件では $t = 0.1 \mu s$ とした. 各時間ステップ において SOR 法による繰り返し計算を行った. 格子数は 1001 点とし,格子間隔 0.03 mm の等間隔格子とした.

2.5. 計算条件

各計算条件を表 5 に示す. Case A~C は定常場の計算で あり,速度 u_0 は, 0.5~24 m/s の範囲でおよそ 1 m/s 刻み でそれぞれ計算を行った. これに対して Case D~G は非定 常場の計算であり,大文字のアルファベットの後の数字は 振動数 f の値を表している.また, Case A~F では,反応 機構には Smooke らの Skeletal 素反応機構を用いており, Case G は拡張 IYH-Skeletal 素反応機構を用いた.なお, Case G-10 は Case D-10 と素反応機構以外の計算条件は同じ であり,計算結果は完全に一致していることから拡張 IYH-Skeletal 素反応機構の妥当性を確認している.

3. 計算結果および考察

3.1. 定常火炎

3.1.1. 火炎構造 (Case A)

図 2 に Case A の $u_0 = u_m = 12$ m/s における火炎構造図を 示す.火炎構造図において熱発生速度が最大になる点の座 標を (x_{Qmax}, Q_{max}) と定義する.また, $x \le x_{Qmax}$ における速 度 u の極小値を u_{min} , そのときの x 方向位置を x_{umin} と定義

図2において熱発生速度が高い領域の右側で酸素と燃料 の質量分率の勾配方向が逆転しており、左側では予混合火 炎が右側では拡散火炎が形成されていると予想される.こ れは、今回の計算条件では予混合気の当量比が 1.2 の燃料 過濃状態であり、そして対向する気体に高温の空気を用い ているためである。特に、ノズル出口速度が大きくなると、 この濃度勾配が逆転する状況が熱発生速度の高い位置で明 確に現れるようになると考えられる。

3.1.2. 熱発生速度最大値に対するノズル出口速度および対 向する空気温度の影響 (Case A, C)

図3に Case A, C におけるノズル出口速度と熱発生速度 最大値の関係を示す. Case A, C ともに, uo が0 m/s から増 加するにしたがい, Qmax は減少, 増加, 減少という変化を することがわかる. これは以下のように考えられる. uo が 0 m/s から増加するにしたがいストレッチが大きくなると, 予混合火炎の強度は弱まるが, しだいに火炎が対向する高 温空気に近づくことで拡散火炎としての強度が増大し, さ らに速度が増加するとストレッチが強くなり過ぎて拡散火 炎としての強度も弱まるためであると考えられる. また,

速度が増加すると Case C の Q_{max} と Case A のそれの差が増 していき, Case C は Case A で火炎が強化されている条件 で消炎している. これは Case C は対向する空気の温度が 1000 K と Case A の 1500 K に比べ低いため,形成される拡 散火炎の強度が弱いためであると考えられる.

3.1.3. 対向する気体の種類の影響 (Case A, B)

対向する気体の種類が形成される火炎にどの程度の影響 を及ぼしているのかを調べるために、対向する気体の種類 を空気から窒素に変えた条件 Case B と Case A の比較を 行った. 図 3 に Case B におけるノズル出口速度と熱発生 速度最大値の関係を示す. 図 3 から Case B は Case A, C と 異なり、速度が増加しても熱発生速度最大値が増加するこ となく消炎することがわかる. これは Case B は対向する 気体が窒素であるために、拡散火炎が形成されないためで ある. また, ノズル出口速度が 3 m/s 以下の条件で Case B と Case A はほぼ一致しており、対向する気体の種類はほと んど影響を及ぼさないことがわかる。以上のことから、ノ ズル出口速度が比較的小さなときには対向する気体の影響 はほとんど無く、予混合火炎のみが発生しており、ノズル 出口速度が大きくなると対向する気体の影響を受けるよう になり、対向する気体が空気の場合には拡散火炎が部分的 に形成されていると考えられる. そして, この部分的に形 成された拡散火炎による高温の既燃ガスが熱損失を低減す る効果が火炎の保持には非常に大きな影響を与えているこ とがわかる.

以上に示したように、定常対向流火炎ではノズル出口速 度が大きくなると拡散火炎の影響が出てくることがわかっ たが、非定常対向流火炎においても同様な現象が生じてい ると考えられる.

さらに, Case C のように 1500 K より低い 1000 K でも, 対向する気体の種類が空気の場合のほうが, 1500 K の窒素 の場合よりも可燃範囲が広いことから,単に高温の対向流 ということではなく拡散火炎が形成されることが重要であ ることがわかる.

3.2. 非定常火炎

3.2.1. 振動数の影響

以下では、非定常火炎の各振動数における様々な物理量 の位相1サイクルにおける変化を図示し考察を行う.これ らの図では縦軸は比較する物理量により変化するが、横軸 は位相 ϕ を正規化したものであり、 $\phi/2\pi = ft$ により与えら れる.計算は着火してから数サイクル分にわたって実行し、 十分にサイクル毎の結果に変化が無くなったことを確認し た上で最後の1サイクルを結果として用いている.ノズル 出口速度 u_0 の変化も黒色の実線で示す.また、以下の図 では、非定常火炎挙動を検討する上で基準とするために、 非定常の場合の位相 ϕ におけるノズル出口速度 u_0 に対応 する定常対向流火炎の結果を●印で示した.なお、この定 常対向流火炎には対向する気体の温度などの条件が同一の ものを用いた.

(1) 熱発生速度最大値とその x 方向位置 (Case D-1~250)

振幅 $A \ge 1$ とした非定常条件である Case D-1~250 の熱 発生速度最大値の Q_{max} およびその x 方向位置 $x_{Q\text{max}}$ の 1 サ イクルにおける変化を図 4 および 5 にそれぞれ示す. 図 4 および 5 より f=1 Hz の場合には $0.13 \le \phi/2\pi \le 0.38$ を除く 位相において非常によく定常火炎の結果と一致しているこ

Fig.4 Cyclic change of Q_{max} (Case A, Case D-1 \sim 250)

Fig.5 Cyclic change of x_{Qmax} (Case A, Case D-1 ~ 250)

3.5

2.5

0.5

0

-0.5<u></u>

0.1 0.2

0.3 0.4

 $R_{\rm Ci,\,Q}$ [-]

Fig.6 Cyclic change of $R_{Ci, Q}$ (Case D-10)

0.5 0.6 0.7 0.8 0.9

 $\phi / 2\pi [-]$

2422

20

18

16

14

12 n_0

10 8

6

4

[m/s]

- H

---HCO - CH2C

CH₂

Fig.7 Flame structure (Case D-10, $\phi/2\pi = 0.14$ ($u_0 = 3$ m/s))

とがわかる. 0.13 $\leq \phi/2\pi \leq 0.38$ での不一致の原因の一つに は図 5 からわかるようにノズル出口速度が 0 m/s に近づい たときに燃焼領域が計算の境界 (ノズル出口) に近づき過ぎ たことが考えられる.他の振動数では十分に境界から離れ ており、上述の影響は無視できることがわかる.

 $f \ge 10$ Hz では振動数の増加に伴い、 Q_{max} および $x_{O\text{max}}$ と もに定常火炎に対する位相遅れが増加し、一方、振幅は減 少することがわかる。これは振動数が大きくなると、速度 の変化に対して、緒量の追従性が悪くなることを示してい る。このことは希薄予混合対向流火炎の場合に林ら[16]に よっても報告されている.

図4から Q_{max} の値は $f=1 \sim 100$ Hz の条件では $u_0=0$ m/s 付近で最小になった直後に最大となることがわかる。この 最大値は定常火炎と比べて非常に大きい. このことを調べ るために,ある化学種 i について,そのモル濃度 C_iの空間 分布図における最大値を C_i max と定義し、さらに C_i max の 位相1 サイクルでの最大値 (Ci max) max, 空間分布図におけ る熱発生速度最大値 Qmax の位相1 サイクルでの最大値 $(Q_{\max})_{\max}$ として以下のような値 $R_{Ci,Q}$ を定義した.

$$R_{Ci,Q} = \frac{C_{i,\max}}{\left(C_{i,\max}\right)_{\max}} / \frac{Q_{\max}}{\left(Q_{\max}\right)_{\max}}$$
(2)

Case D の f = 10 Hz での H, HCO, CH₂O, CH₃ の四つのラ ジカルの R_{Ci}oの1 サイクルにおける変化を図6 に示す. 四つのラジカルの $C_{i, \max}$ と Q_{\max} はすべて $\phi/2\pi = 0.36$ で最 大となるため,すべての R_{Ci.Q} は $\phi/2\pi = 0.36$ で R_{Ci.O} = 1.0 となる. $\phi/2\pi = 0.26$ 付近で四つのラジカルについて $R_{Ci,O} \ge$ 1.0 となっており、 $\phi/2\pi = 0.36$ における燃焼時に比べ、多 くのラジカルが使われずに残っていることがわかる。つま り, 非定常火炎では u0 = 0 m/s に向かう速度の減少に対し て十分に火炎が追従できず,多くの燃え残りを生じ,u0= 0 m/s から速度の増加に伴いこの燃え残りが一気に燃えた ためであると考えられる.また,¢/2π ≥ 0.36 においても複 数のラジカルについて R_{Ci. 0} ≧1.0 となっているが,これは 予混合燃焼に拡散燃焼が混在している条件であり、予混合 燃焼のみが起きている φ/2π ≤ 0.36 の条件とは火炎構造火炎 構造が異なるためである.

また, Case D の f = 10 Hz においてノズル出口速度が同 じ $u_0 = 3 \text{ m/s}$ であるが, 0 m/s に向けて小さくなっていく $\phi/2\pi = 0.14$ と, 逆に大きくなっていく $\phi/2\pi = 0.36$ の火炎構 造を図7および8に示す. 図7および8を比較すると φ/2π = 0.36 の方が φ/2π = 0.14 に比べて火炎が左側にある. これ は上述のように速度場に対して火炎面が遅れているためで ある. さらに, φ/2π = 0.36 の方が φ/2π = 0.14 に比べて火炎 面直前 (左側)の速度が大きいことがわかる。したがって、 火炎面により多くの燃料と酸化剤が供給されており、この ことも熱発生速度最大値が定常火炎にくらべて非常に大き くなった要因であると考えられる.

さらに、図5から分かるように、火炎は、ノズル出口速 度の小さい位相の場合を除いて、ノズル出口速度の大きい 位相となる広い時間範囲で, x = 17~18 mm 付近のよどみ 点位置に存在する. これは, この広い時間範囲においては, ストレッチが大きいので火炎がよどみ点位置に拘束される ためと考えられる.

(2)「燃焼速度」(Case D-1~250)

本研究では、「便宜的な燃焼速度」Su を、火炎伝播速度を

Fig.9 Cyclic change of Su (Case A, Case D-1 \sim 250)

Fig.10 Cyclic change of Su_O (Case A, Case D-1 ~ 250)

表す x_{Qmax} の時間変化と、火炎よりも x 軸方向上流 ($0 \le x \le x_{Qmax}$) での速度の極小値 u_{min} から以下のように定義した.

$$Su = -\left(\frac{dx_{Q\max}}{dt} - u_{\min}\Big|_{0 \le x \le x_{Q\max}}\right)$$
(3)

ここで速度の定義は x 軸方向を正としているが, Su につい ては逆向きを正とするために全体としてマイナスが付いて いる.この「便宜的な燃焼速度」は実験的に燃焼速度を算 出する際によく用いられるものである[24].

これに対して数値計算において燃焼速度を算出する際に よく用いられる「全熱発生速度による燃焼速度」 $Su_Q \epsilon$,熱 発生速度 Q の火炎面に垂直方向の積分値と、予混合気入口 x = 0 mm での気体の密度 ρ_{in} および酸素の質量分率 $Y_{O2,in}$, 酸素のモル質量 m_{O2} ,およびメタンのモル当りの低発熱量 $H_{L,CH4}$ から以下のように定義した.

$$Su_{Q} = \frac{1}{\frac{\rho_{\rm in}Y_{\rm O2,\,in}}{2m_{\rm O2}}H_{\rm L,\,CH4}} \int Qdx$$
(4)

Case D-1~250 における「便宜的な燃焼速度」および「全 熱発生速度による燃焼速度」の位相 1 サイクルでの変化を 図 9 および 10 にそれぞれ示す. これらの図には当量比 1.2 のメタン・空気予混合気の層流燃焼速度 $Su_0 = 0.39$ m/s を 一点鎖線で示してある. u_0 が 0 に近づくと定常火炎では Su, Su_Q ともに Su_0 に近づくが,位相に対して,すなわち u_0 に対して一定値にならないことがわかる.これは速度が 遅いときには予混合火炎のみが起きていると考えられ,拡 散火炎などの影響が現れにくいが,逆に速度が比較的大き く,拡散火炎の影響が無視できない場合には, $Su \ge Su_Q$ の 定常・非定常ともにその影響が現れるためである.また, 速度が大きくなったことでストレッチの影響も現れている と考えられる.

各振動数において、 $\phi/2\pi = 0.25$ 付近で Su は極大となる. これは図 5 からわかるように速度の低下によりよどみ点付 近に拘束されていた火炎が急激に x 軸方向の負の方向に移 動し,式 (3) において dxomax/dt の項が負の方向に大きく なったためである.また、 $\phi/2\pi = 0.3 \sim 0.5$ 付近で Su は極 小となる。これは前述とは逆に速度の増大により火炎が急 激に x 軸方向の正の方向に移動したためである. この極小 となる位相 (速度) は図 4 において、f < 200 Hz の場合には、 Q_{max} が極大となる位相とほぼ一致する.本研究の条件では Qの火炎面に垂直方向の積分値と Qmax は対応しているの で、本来であれば Q_{max} が大きいときには Su も大きくなる はずである.これに反する前述の結果の原因は、流れ場と スカラー場に位相差があるためであると考えられる.また, ノズル出口速度が大きい場合には図 5 に示されているよう に、火炎はよどみ点に拘束され、あまり大きく移動するこ とはなく, その影響が Su に現れている.

 Su_Q は各振動数において、 $\phi/2\pi = 0.2 \sim 0.3$ 付近で極小となり、 $\phi/2\pi = 0.3 \sim 0.5$ 付近で極大になる. これは図 4 に示したように Q_{max} が $\phi/2\pi = 0.2 \sim 0.3$ 付近で極小、 $\phi/2\pi = 0.3 \sim 0.5$ 付近で極大となるためである.

3.2.2. 振幅の影響 (Case E-1~250)

前述の通り, Case D では振幅 *A* = 1 であるため瞬間的に ノズル出口速度が 0 m/s になり, 振動数が小さい条件では 火炎がノズル出口に近づき過ぎるので境界の影響を受けて しまう. そこで, Case E では振幅を *A* = 0.75 としてノズル 出口速度が最小でも 3 m/s になるようにした.

Case E-1~250 の位相 1 サイクルにおける Q_{max} , $x_{Q\text{max}}$, f = 10 Hz のときの $R_{Ci,Q}$, Su, および Su_Q の変化を図 11~ 15 に示す.図 12 より全ての振動数において火炎はノズル 出口から十分に離れた位置に存在しており境界の影響は無 視できることがわかった.

図 11, 12, 14 および 15 から Case D と同様に,振動数の 増加とともに定常火炎からの位相遅れが増大することがわ かる.また, Case D で確認されたような熱発生速度最大値 が定常火炎に比べ著しく大きくなることはないことがわか る.図 13 からも f = 10 Hz における H, HCO, CH₂O, CH₃ の 四つのラジカルの $R_{Ci,Q}$ は,ほぼ定常火炎と一致しており $R_{Ci,Q} = 1$ を大幅に超えることはなく,燃え残りがあまりな いことがわかる.これは,振幅が小さくなったことでノズ

18.5 22 20 18 16 [mm] 17 14 s 12 ш 14 Comax 10 a Steady flow 1Hz 100Hz 6 10Hz . - 200Hz - 250Hz 16.5 4 16<u></u> 0.6 0.7 0.2 0.3 0.5 0.1 0.4 0.8 0.9 $\phi/2\pi$ [-]

Fig.12 Cyclic change of x_{Qmax} (Case A, Case E-1 ~ 250)

Fig.13 Cyclic change of R_{Ci, O} (Case A, Case E-10)

Fig.14 Cyclic change of Su (Case A, Case E-1 \sim 250)

Fig.15 Cyclic change of Su_Q (Case A, Case E-1 ~ 250)

ル出口速度の時間変化が小さくなり,流れ場に対して火炎 が燃え残りを生じるほど遅れないためであると考えられ る.

図 14 および 15 より Su および Su_Q は Case D と同様に位相に対して一定値にならないことがわかる.また,ノズル 出口速度の最小値が 3 m/s であり,このときでも依然とし てストレッチの影響が大きく,また予混合燃焼のみが起き ていると考えられる速度範囲が狭いため,定常火炎におい て速度が小さくなっても層流燃焼速度に十分近づくことは ない.

3.2.3. 対向する気体の温度の影響 (Case F-1~250)

対向する気体の温度の影響を調べるために, Case F では $T_{\rm N} = 1000 \text{ K}$ とした.また,すべての振動数において境界 の影響が無視できるようにA = 0.75 とした. $T_{\rm N} = 1000 \text{ K}$ と した定常火炎 (Case C) はノズル出口速度が 8.75 m/s までは 燃焼が起きているが,10 m/s 以上では消炎が起きることを 確認した.そこで,Case F では u_0 が最大でも 8.75 m/s 以下 になるように $u_{\rm m} = 5$ m/s とした.

Case F-1~250 の位相 1 サイクルにおける Q_{max} , $x_{Q\text{max}}$, f = 10 Hz のときの $R_{Ci, Q}$, Su および Su_Q の変化を図 16~20 に示す.

図 16 から, Case F における熱発生速度最大値は, ノズ ル出口速度が大きくなったとき Case D および E に比べて 小さくなっていることがわかる. これは, Case F は Case D および E に比べ対向する流れの温度が 1000 K と低く, さ らに, ノズル出口速度の最大値も Case D および E に比べ て遅いのでストレッチが弱いために, ノズル出口速度が大 きくなったときに影響を及ぼす拡散火炎の強度が弱くなっ たことが原因であると考えられる. このような違いはある ものの, Case F でも Case D および E と同様に振動数の増 加とともに流れ場に対する火炎の位相遅れが増大していく ことがわかる.

図 17~20 から分かるように,他の諸量についても, Case D および E と同様な傾向を示した.

Fig.16 Cyclic change of Q_{max} (Case C, Case F-1 \sim 250)

Fig.17 Cyclic change of x_{Qmax} (Case C, Case F-1 \sim 250)

Fig.18 Cyclic change of R_{Ci, Q} (Case C, Case F-10)

Fig.19 Cyclic change of Su (Case C, Case F-1 \sim 250)

Fig.20 Cyclic change of Su_O (Case C, Case F-1 ~ 250)

3.3. 拡張 IYH-Skeletal 素反応機構による検討 (Case G-10) Case G-10 において、φ/2π = 0.55 (u₀ = 16 m/s) のときの酸 素分子 X₂, Y₂, XY の質量生成速度 w_{X2}, w_{Y2}, w_{XY}, それらの 合計および熱発生速度の空間分布を図 21 に示す.図 21 に おいて、w_{X2} は予混合気中の酸素の質量生成速度であり、 この値が負の方向の大きさが予混合燃焼の強度を表す.同 様に w_{Y2} は対向空気流中の酸素の質量生成速度であり、拡 散燃焼の強度を表す.

予混合火炎と拡散火炎の判別するために Yamashita らの
Flame Index という指標を用いることができる[25,26].
Flame Index は燃料の質量分率の勾配ベクトルと酸素の質量
分率の勾配ベクトルの内積で以下のように定義される.

Flame Index =
$$\nabla Y_{\text{Eucl}} \cdot \nabla Y_{\Omega^2}$$
 (Q > 0.01 · Q_{max}) (5)

質量分率の勾配ベクトルはその化学種の拡散方向を表し, 燃料と酸素の拡散方向が一致する予混合燃焼が起きている 場所では Flame Index は正の値になり、燃料と酸素の拡散 方向が逆の拡散燃焼が起きている場所では負の値になる. この Flame Index が正しく予混合燃焼と拡散燃焼を判別し ているかについても拡張 IYH-Skeletal 素反応機構を用いて 検討を行った. 図 21 の場合における Flame Index を正負で ±1 で 2 値化して図 22 に示す. この図より Flame Index の正 負の切り替わる位置は X₂ と Y₂の質量生成速度が切り替わ る位置から左側にややずれていることがわかる. これは Y2 が拡散火炎の位置で消費されるが、同時にほぼ同じ位置で XY が生成されていることにより酸素分子全体の質量分率 勾配が負である領域が x 方向の左側にわずかに移動するた めである. このように, Flame Index は本研究で対象とする ような予混合燃焼と拡散燃焼が混在するような場合には, 正負の値のオーダーが大きく異なり、また、拡散燃焼の領 域を広く見積もり過ぎるという2つの問題がある.しかし, Flame Index の値を正か負で見れば位置はややずれるものの おおよその判別は可能である.

wx2 および wy2 の空間分布における負のピーク値をそれ ぞれ wx2, min および wy2, min, またその x 方向位置をそれぞ

Fig.21 Mass production rate of w_{X2} , w_{Y2} and w_{XY} (Case G-10, $\phi/2\pi = 0.55 \ (u_0 = 16 \text{ m/s})$)

Fig.22 Flame Index (Case G-10, $\phi/2\pi = 0.55$ ($u_0 = 16$ m/s))

れ x_{wx2 min} および x_{wy2 min} と定義し,これらの諸量の位相 1 サ イクルでの変化を図 23 および 24 に示す. これらの図より, wy2. min の値は u0 の変化に対応して単調に変化し、その x 方向位置は全ての位相においてよどみ点付近に定在してい ることがわかる。前者は速度の増加によってストレッチが 増加することで燃料および酸素の勾配が大きくなり火炎に 供給される燃料および酸素の量が増加するためである。一 方,後者は拡散火炎が燃料と酸素の拡散速度が量論比にな るところ (ある程度ストレッチが大きい場合にはよどみ点 近傍) に形成されるが、この位置はノズル出口での予混合 気と対向する空気の質量流量比が一定の場合にはほとんど 変化しないためである. これに対して, wx2.min は図4の Case D-10 の熱発生速度最大値に対応して変化しており, wx2 の負のピークの x 方向位置の位相に対する変化は図 5 の熱発生速度最大値の x 方向位置 xomax の位相に対する変 化にほぼ一致していることがわかる.これは、非定常予混 合火炎は速度場に対して遅れが存在するものの流れ場の影 響を受けやすいこと,そして当量比が 1.2 であるため強度 的には拡散火炎よりも予混合火炎の方が強く予混合火炎が 支配的だからである.

4. 結言

本研究では、当量比 1.2 のメタン・空気過濃予混合気と 高温空気の対向流火炎において、ノズル出口速度 u₀ に周 期的変動を加えることで、その平均速度、振動数、振幅、 空気の温度などのパラメータが火炎挙動に与える影響つい て検討した。

まず,周期的変動の振幅をゼロとした定常火炎の場合に ついて,以下のような知見を得た.

- (1) 対向する気体に温度 1500 K の高温空気を用いた場合, ノズル出口速度が u₀ ≤ 3 m/s では予混合火炎のみが形成 され, u₀ ≥ 3 m/s では予混合火炎と拡散火炎が共存する. そして, u₀ = 24 m/s という非常に大きい速度でも火炎 が形成される.
- (2)対向する気体に高温の空気を用いた場合、ノズル出口 速度の増加に対して熱発生速度の最大値は減少、増加、 減少という変化をする。これは速度の増加にともなう ストレッチの増加により予混合火炎の強度が低下する 効果と、対向する高温空気に火炎が近づくことで拡散 火炎の強度が増大する効果のバランスによって起きる。
- (3) 対向する気体が高温でかつ空気 (窒素でなく) である場合に、ノズル出口速度に対して安定した火炎が形成される可燃範囲が広い.すなわち、火炎の安定性には熱

損失が低減されることが重要であり,特に,拡散火炎 が形成され高温の既燃ガスが熱損失を低減する効果が 重要である.

次に,非定常火炎の場合については,定常火炎と比較検 討することにより,以下のような知見を得た.

- (4) u0 の変化に対して緒量の追従性が悪くなるため、振動数の増加にともない位相遅れが増加する.このことは振幅および対向する空気の温度を変えても起きる.
- (5) u0 が位相一周期で大きく変化する条件で、Q_{max} は u0 = 0 m/s となる位相付近で極小になった直後に極大とな る.これは、速度場の変化に火炎が追従できないため、 u0 の減少とともに燃え残り生じ、u0 が増加するときに 火炎面直前の速度が速くなるため燃え残りが一気に燃 えるからである。
- (6)「便宜的な燃焼速度」および「全熱発生速度による燃焼 速度」は、ストレッチだけでなく、拡散火炎や燃焼場 の非定常性の影響を受ける。

最後に、酸素分子 O を予混合気中の酸素に由来する X と、対向する空気中の酸素に由来する Y の 2 種類に分ける ことで、火炎を予混合火炎と拡散火炎に判別可能な拡張 IYH-Skeletal 素反応機構を考案し、この素反応機構により 非定常火炎における拡散火炎の影響を検討した。

- (7) 拡散火炎の強度は uo の変化によるストレッチの増減に 対応して単調に変化する.また,その火炎の形成位置 はよどみ点付近からほとんど変化しない.
- (8)予混合火炎は流れ場の影響を受けやすいので、予混合 火炎の強度および形成位置は u₀ の変化に対して大きく 変化する。
- (9) Flame Index は予混合燃焼と拡散燃焼が混在するような 場合には、正負の値のオーダーが大きく異なり、また、 拡散燃焼の領域を広く見積もり過ぎるという 2 つの問 題がある.しかし、Flame Index の値を正か負で見れば 位置はややずれるもののおおよその判別は可能である.

References

- Tanahashi, M., Uddin, Md. A., Iwase, S., and Miyauchi, T., JSME Trans. B. (in Japanese), 65-638: 1-7 (1999).
- Noda, Y., Tanahashi, M., and Miyauchi, T., J. of Turblence: 1-15 (2004).
- Tanahashi, M., Kang, S. -J., Miyamoto, T., Shiokawa, S., and Miyauchi, T., J. of Heat Fluid Flow, 25: 331-340 (2004).
- 4. Tanahashi, M., Sato, S., Shimura, M., and Miyauchi, T., J. of

Thermal Science and Technology, 3-3: 391-409 (2008).

- Noguchi, Y., Furukawa, J., Yoshida, M., Ikeo, S., and Hirano, T., *JSME Trans. B.* (in Japanese), 67-658: 212-219 (2001).
- Furukawa, J., Noguchi, Y., and Williams, F. A., *JSME Trans. B.* (in Japanese), 69-680: 210-215 (2003).
- Furukawa, J., Noguchi, Y., and Williams, F. A., *JSME Trans.* B. (in Japanese), 74-744: 169-176 (2008).
- Hashimoto, H., Sou, A., Furukawa, J., and Williams, F. A., JSME Trans. B. (in Japanese), 69-680: 216-221 (2003).
- Li, Z. S., Li, B., Sun, Z. W., Bai, X. S., and Alden, M., Combust. Flame 157: 1087-1096 (2010).
- 10. Peters, N., Proc. Combust. Inst. 21: 1231-1250 (1986).
- 11. Dixon-Lewis, G., Proc. the Royal Society, A, 462: 349-370 (2006).
- 12. Sung, C.J. and Law, C.K., *Combust. Flame*, 123: 375-388 (2000).
- Egolfopoulos, F.N. and Campbell, C.S., J. Fluid. Mech., 318: 1-29 (1996).
- Zambon, A.C. and Chelliah, H.K., Proc. Combust. Inst., 31: 1247-1255 (2007).
- Yamashita, H., Nishioka, M., and Takeno, T., *Energy Convers. Mgmt.* 38: 1343-1352 (1997).
- 16. Yamashita, H., *Nensho Kenkyu* (in Japanese), 124: 47-55 (2001).
- Hayashi, N., Yamashita, H., Nakamura, Y., and Yamamoto, K., *JSME Trans. B.* (in Japanese), 72-713: 208-215 (2006).
- Kato, T., Hayashi, N., Yamashita, H., Nakamura, Y., and Yamamoto, K., *JSME Trans. B.* (in Japanese), 71-712: 210-217 (2005).
- Nonomura, K., Yamashita, H., Hayashi, N., and Yamamoto, K., *JSME Trans. B.* (in Japanese), 74-747: 133-140 (2008).
- Smooke, M. D., Reduced Kinetics Mechanisms and Asymptotic Approximations for Methane-Air Flames, Springer-Verlag: 1-28 (1991).
- 21. Hayashi, N. and Yamashita, H., J. Combust. Soc. Japan (in Japanese), 50-154: 345-352 (2008).
- 22. Kee, R. J. et. al., Sandia Report, SAND86-8246, (1986).
- 23. Kee, R. J. et. al., Sandia Report, SAND89-8009, (1989).
- 24. Yu, G., Law, C. K., and Wu, C. K., *Combust. Flame* 63: 339-347 (1986).
- Yamashita, H., Shimada, M., and Takeno, T., Proc. Combustion Institute, 26: 27-34 (1996).
- Yamashita, H., Tsutsumitani, S., and Choi, N-J, *JSME Trans.* B. (in Japanese), 65-630: 775-782 (1999).